Curvilinear Coordinates

It is often convenient to work with variables other than the Cartesian coordinates x; ( = «,
y, z). For example in the previous lectures we met spherical polar and cylindrical polar
coordinates. These are two important examples of what are called curvilinear
coordinates. In this lecture we set up a formalism to deal with these rather general
coordinate systems.

Actually we have effectively covered parameterization of surfaces and volumes. Here we do the
same thing but think about how this realizes non-Cartesian Co-ordinate systems.

Suppose we change from the Cartesian coordinates (1, T2, x3) to the curvilinear coordinates,
which we denote u;, each of which are functions of the x;:-

ul = ul(zl, 2, 23), u2 = u2(zl, 2, z3) and u3 = wu3(z1, 2, =3)

The u; should be single-valued, except possibly at certain points, so the reverse transforma-
tion,

r; = x;(ur, ug, ug)
can be made. A point may be referred to by its Cartesian coordinates x;, or by its curvilinear
coordinates u;. For example, in 2-D, we might have:-

q, axis

q;

Now consider coordinate surfaces defined by keeping one coordinate constant.

e The Cartesian coordinate surfaces ‘r; = constant’ are planes, with constant unit
normal vectors e; (or ej, e; and e3), intersecting at right angles.

e The surfaces ‘u; — constant’ do nz)t, in general, have constant unit normal vectors,
nor in general do they intersect at right angles.
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Example: Spherical polar co-ordinates

z
r=attyr 0 = Cos_l{\/:c? +y2+z2} ¢ = tan” <§:) '

The surfaces of constant r, 6, and ¢ are:-

r = constant = spheres centred at the origin unit normal e
¢ = constant = cones of semi-angle ¢ and axis along the z-axis unit normal ey
¢ = constant = planes passing through the z-axis unit normal e ¢

These surfaces are not all planes, but they do intersect at right angles.

If the coordinate surfaces intersect at right angles (i.e. the unit normals intersect at right
angles), as in the example of spherical polars, the curvilinear coordinates are said to be
orthogonal.

1. Orthogonal Curvilinear Coordinates

Unit Vectors and Scale Factors

Suppose the point P has position r = r(uy, us, uz). If we change u; by a small amount, du,
then r moves to position (r + dr ), where

or

dr = = duy = hye; duy
T 8u1

where we have defined the unit vector e¢; and the scale factor h; by

or

Oy

1 or

hy = - =,
! hlaul

and e¢; =

e The vector ¢e; is a unit vector in the direction of increasing u;.

e The scale factor h; gives the magnitude of dr when we make the change u; — u;+du;.
Thus for an infinitessimal change of u;

|dr| = hy duy



Similarly, we can define h; and e; for : = 2 and 3.

e The unit vectors ¢; are not constant vectors. In general they are non-
Cartesian basis vectors, they depend on the position vector r, i.e. their
directions change as the u; are varied.

o Ife;-e:=0

] ij> then the u; are orthogonal curvilinear coordinates.

For Cartesian coordinates, the scale factors are unity and the unit vectors e; reduce to the
Cartesian basis vectors we have used throughout the course:

or

r = xe + yes + ze3 so that hye = 8__ = e, etc.
- a

Example: spherical polars: u; = r, uy = 6 and us = ¢ in that order:
r = rsinf cos¢i + rsinf sing j+1r cost k,

where to avoid confusion in this section we use 4, j, k for the Cartesian basis vectors. (By
this stage there should be no confusion with the suffices i, j, k). Therefore

9,

é% = sinf cos¢ i +sinf sing j +cost k — hp = 1

or ' - .

% = rcosf cospi+rcostsing j—rsinbk = hy = r

@ = —rsinfsingi+r sinf cos¢ j — h,. = rsinf
dp ° J b =

Thus
er = sinfcos¢i+sinfsingj+cosfk = r/r

eg = cosfcosgi+costsingj —sinfk
ep = —singi+cosgj

These unit vectors are normal to the level surfaces described above (spheres, cones and
planes) and are clearly orthogonal: e, - ey = er ey = €fey = 0 -
and form a RH orthonormal basis: ey X €y = €y €p X ey = er, €h X er = ep.

Example: Cylindrical polars: u; = p, us = ¢ and uz = z in that order:

r = pcos¢i+ psingj+zk.

Thus
@:Cosqbg'jLsingﬁl’ ; g—é:—psin¢i+pcos¢l' : a—g:

| 7

and
hp =1 ; h¢:p; hy =1

Therefore ep="coSGi+sing ey =—singi+cosoiie=k



These unit vectors are normal to the level surfaces described by cylinders about the z-axis
(p = constant), planes through the z-axis (¢ = constant), planes perpendicular to the z axis
(z = constant) and are clearly orthogonal.

Remark: An example of a curvilinear coordinate system which is not orthogonal is provided
by the system of elliptical cylindrical coordinates (see tutuorial 9.4).

r = apcosfi+bpsindj+ zk (a # b)

In the following we shall only consider orthogonal systems

Arc Length
The arc length ds is the length of the infinitesimal vector dr :-

(ds)® =dr - dr .

In Cartesian coordinates (ds)? = (dz)’ + (dy)® + (d=)°.

In curvilinear coordinates, if we change all three coordinates w; by infinitesimal amounts
du;, then we have

or or or
dr = —du; + — dus + — du
— 3u1 ! Gug 2 8U3 s
= hyduiey + hy dugey + hz duges
For the case of orthogonal curvilinears, because the basis vectors are orthonormal we have

(ds)* = hidui + h3duj + h} duj
For spherical polars, we showed that
hy = 1, hg =, and h¢ = r sinf

therefore

(ds)* = (dr)* 4% (df)? + r? sin?6 (d¢)?
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2. Elements of Area and Volume

Basically we just repeat using scale factors what we did in lectures 18 and 19.

Vector Area

If uy — uy + duy, then r — 7 +dr, where dr, = hy e; duy, and if uy — uy + duy, then
r — 1 +dr,, where dr, = hy e; duy. (Curvature greatly exaggerated in figure!)

On the surface of constant u; the vector area bounded by dr, and dr , is given by

ﬁl = (ﬁz) X (@3) = (h2 dUQ €2> X (hg dU3 63) = h2 hg dU2 dU3 €1,

since e, X e = e, for orthogonal systems.

Thus dS, is a vector pointing in the direction of the normal to the surfaces ‘u; =constant’,
its magnitude being the area of the small parallelogram with edges dr, and dr,. Similarly,
one can define dS, and dS ,.

For the case of spherical polars, if we vary 6 and ¢, keeping r fixed, then
dS . = hg db ee(Simﬂaﬂ)j X (hgddey) =hghydddser=r’sinddddper.
for @0 and @¢

Volume
The volume contained in the parallelepiped with edges dr,, dr, and dr, is

dV. = dr, -dr, xdr,
= (hl du1 Ql) i (h2 d’LL2 Qg) X (h3 dU3 Q3)

= hl h2 h3 du1 d’U,2 dU3
because €; - e5 X €3 = 1. _phe
For spherical polars, we have ap
E p sin( p)AB
dV=hr hg h¢ dr df d¢ = r’sin 0 dr df d¢ ."gw.




Components of a Vector Field in Curvilinear Coordinates

A vector field A(r) can be expressed in terms of curvilinear components A;, defined as:—
A(E) = Z Ai (ub U, u3) &)

where ¢; is the ith basis vector for the curvilinear coordinate system.

For orthogonal curvilinear coordinates, the component A; is obtained by taking the scalar
product of A with the ith (curvilinear) basis vector e;

Aj=¢;-Alr)

NB A; must be expressed in terms of u; (not x,y, z) when working in the u; basis.

Example If A = i in Cartesian coordinates, then in spherical polars, Ay = A-e, = sin 6 cos ¢,
etc.

A(r, 6, ¢)=sin9cos¢gr+cosé?cos¢ga—sin¢g¢.

Example If A =r then in cylindrical polars Ap = A - ¢, = pcos? ¢ + psin® ¢ = p etc, and

Alp, ¢, 2) =r=pep+ze;

3. Grad, Div, Curl, and the Laplacian in Orthogonal Curvilinears

We defined the vector operators grad, div, curl firstly in Cartesian coordinates, then most
generally through integral definitions without regard to a coordinate system. Here we com-
plete the picture by providing the definitions in any orthogonal curvilinear coordinate system.

Gradient
In section (2) we defined the gradient in terms of the change in a scalar field f when we let
r—r+dr

of = NV f(r)-dr (1)
Now consider what happens when we write f in terms of orthogonal curvilinear coordinates
f = f(uy, ug, uz). As before, we denote the curvilinear basis vectors by e;, e,, and es.
Let uy — uq + duy, us — us + dus, and usz — us + dus.

By Taylor’s theorem, we have

_of of of
5f = aUI du1 + 8u2 dUQ + 8U3 dU3

We have already shown that

@ = hldU1Q1+h2dU2Q2+h3dU323.

94



Using the orthogonality of the basis vectors, e; - ej = d; j» We can write

of of of

of = <5u1 e + oy €y + s Q3> (&1 duy + ey duy + esdus)

1 of 1 of 1 of
(hl 3u1 & t h2 8U2 €2 s hg 8u3

(1 of 1 of 1 af
N (hl 3u16 t hg 8u2€ o hg 8u3 > dr

) : (hl e, duy + hg ey dus + hg es du?,)

Comparing this result with equation (1) above, we obtain the following expression for V f

in orthogonal curvilinears

Vi =

5.1 Of

= — —e
;hiaui_z

1 of 1 of L of
hl 87,1,17 +h2 8U27 +h3 0u3

For spherical polars, we obtain

of 1 of 1

Yf(raea(ﬁ) = 37“8_ +60

For cylindrical polars, we obtain

9, 10
VF(p.0.2) = p 5 e o b es S

Divergence
In orthogonal curvilinear coordinates

of

r 06 * & rsinf d¢

of
0z

0 0
oy (A1h2h3) + a—uz(z‘hhghl)

1
divA = ———
Ve hlhghg {

0

9 ——(Ashy hz)}

This expression can be obtained by using the integral definition of divA, or alternatively

using vector operator identities (see BK 4.13, RHB 8.10).

For Cartesian coordinates, we have h; = 1, and we regain the usual expression for V - A in

Cartesians.
For spherical polars we have

1 0

divA(r,0,¢) = Tand {8r (7‘ sin QAr) (;99 (7“ sin HAQ) + 8([15 (TA¢>}

= %% (7’2Ar) + 1 {% (sin 9149)

55 (10} -



where Ay, Ay, and A¢ are the components of the vector field A in the basis (er, e,, Q¢).

For cylindrical polars we have

1[0 0 0
divA(p, ¢,2) = ;{8_p (pAp) + 8_¢A¢ 9 (PAZ)}
10 10 0
= Jop ) + gt + oA

where Ap, A¢, and Ay are the components of the vector field A in the basis (gp, Ch €r).
Curl

In orthogonal curvilinear co-ordinates, curl is most conveniently written as

hiey  haoey hszes
1 ) 0 0
hihohs| Ou;  Ouy  Ous
hi A1 ha Ay hs As

VxA =

e.g. the first component is given by

1 0 0
6 VXA = I s {EMQ (Ashs) — 0 (A2h2)}

and the components of V x A in the e, and e; directions may be obtained by cyclic permu-
tations of the suffices.

The above formula can be demonstrated by using the line integral definition of curl, as used
to proof Stokes’ theorem, (see tutorial) or by vector operator identities (BK. 4.13 or RHB
8.10).

For spherical polars we have

er reg T sin6g¢

1 o 0 0
Vxd = r2sinf | or 90 0_¢
A, 1Ay rsinf Ay

Laplacian of a Scalar Field
The Laplacian operator acting on a scalar field is defined by V2f = V - (V f), giving:—

Vi - 1 0 (hahg Of . 0 (hshy Of . 0 (hihy Of
N hl hg h3 8u1 hl 0U1 811,2 hg 8uQ 8U3 h3 8“3

In spherical polars, we have
9 B 1 2 9 of 2 0 f 0 1 g
Vifno.0) = r2sind | or \ sinf 5, or + a0 \> nQ * ¢ \ sinf 96

_ Lo (50f 1 9 ofry . o°f
- FEor <r 87“) * r2sin29{8m98«9 <Sl 989) * a¢2} |
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