

Mathematics-1-

For Engineering

By Prof. dr salah Raza saeed

Chapter 2 Function and graph

Prof. dr. Salah Raza Saeed

OVERVIEW

CIHAN UNIVERSITY SULAIMANIYA

Functions are fundamental to the study of calculus. In this chapter

- we review what functions are and how they are pictured as graphs, how they are combined and transformed, and ways they can be classified
- We review the trigonometric functions, and obtain a function's graph. The real number system, Cartesian coordinates, straight lines, parabolas, and circles. We treat inverse, exponential, and logarithem

November 16, 2023

2.1 THE BASIC FUNCTIONS AND CURVES

The standard functions and shapes are

- 1. Straight Lines: y = mx + c
- 2. Quadratics (parabolas): $y = ax^2 + bx + c$
- 3. Polynomials: $y = a_n x^n + \cdots + a_1 x + a_0$
- 4. Hyperbola: $y = \frac{1}{r}$
- 5. Exponential: $y = e^x \equiv \exp x$
- 6. Logarithm: $y = \ln x$
- 7. Sine: $y = \sin x$
- 8. Cosine: $y = \cos x$
- 9. Tangent: $y = \tan x$
- 10. Circles: $y^2 + x^2 = r^2$
- 11. Ellipses: $\left(\frac{y}{a}\right)^2 + \left(\frac{x}{b}\right)^2 = 1.$

https://scholar.google.com/citations?user=gBsVwVYAAAAJ&hl=

CIHAN UNIVERSITY SULAIMANIYA

2.2 FUNCTION PROPERTIES

Functions are a tool for describing the real world in mathematical terms. A function can be represented by an equation, a graph, a numerical table, or a verbal description; or we can say its a rule of mapping

DEFINITION A function f from a set D to a set Y is a rule that assigns a *unique* (single) element $f(x) \in Y$ to each element $x \in D$.

y = f(x) ("y equals f of x").

In this notation, the symbol f represents the function, the letter x is the **independent variable** representing the input value of f, and y is the **dependent variable** or output value of f at x.

2.2 FUNCTION PROPERTIES

The set D of all possible input values is called the <u>domain</u> of the function. The set of all values of f(x) as x varies throughout D is called the <u>range</u> of the function.

A function is a rule for mapping one number to another. For example: $f(x) = x^2$ is a mapping from x to x^2 so that $f(3) = 3^2 = 9$.

EXAMPLES 1. If f(x) = 3x + 1 then f(2) = 7 and f(a) = 3a + 1. 2. If $f(z) = z^2 - 1$ then f(1) = 0.

			NYRSTY / Sey	RSITY
EXAMPLE	Function	Domain (x)	Range (y)	IIYA
	$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$	
	y = 1/x	$(-\infty, 0) \cup (0, \infty)$	$(-\infty, 0) \cup (0, \infty)$	
	$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$	
	$y = \sqrt{4 - x}$	$(-\infty, 4]$	$[0,\infty)$	
	$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]	

Solution The formula $y = x^2$ gives a real y-value for any real number x, so the domain is $(-\infty, \infty)$. The range of $y = x^2$ is $[0, \infty)$ because the square of any real number is nonnegative and every nonnegative number y is the square of its own square root, $y = (\sqrt{y})^2$ for $y \ge 0$.

The formula y = 1/x gives a real y-value for every x except x = 0. For consistency in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1/x, the set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since y = 1/(1/y). That is, for $y \neq 0$ the number x = 1/y is the input assigned to the output value y.

In $y = \sqrt{4 - x}$, the quantity 4 - x cannot be negative. That is, $4 - x \ge 0$, or $x \le 4$. The formula gives real y-values for all $x \le 4$. The range of $\sqrt{4 - x}$ is $[0, \infty)$, the set of all nonnegative numbers.

The formula $y = \sqrt{1 - x^2}$ gives a real y-value for every x in the closed interval from -1 to 1. Outside this domain, $1 - x^2$ is negative and its square root is not a real number. The values of $1 - x^2$ vary from 0 to 1 on the given domain, and the square roots of these values do the same. The range of $\sqrt{1 - x^2}$ is [0, 1].

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f. In set notation, the graph is

$$\{(x, f(x)) \mid x \in D\}.$$

The Properties of Functions

- ≻ The Domain and Range of a Function.
- ≻ The Increase and Decrease of a Function.
- ≻ The Maximum and Minimum of a Function.
- \succ The Sign of a Function.
- ≻ The Intercepts of a Function.
- > The Asymptotes of a Function.

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f. In set notation, the graph is

 $\{(x, f(x)) \mid x \in D\}.$

Even Functions and Odd Functions: Symmetry

November 16, 2023

The zeros of a function, f(x), are the values of x when f(x) = 0.

EXAMPLES

1.
$$f(x) = 2x + 3$$
 has zero $x = -\frac{3}{2}$.

2.
$$f(x) = x^2 + 3x + 2$$
 has zeros $x = -1, -2$.

The argument of a function could be the value of another function. For example if $f(x) = x^2$ and g(x) = x + 1 then

$$f(g(x)) = (g(x))^2 = (x+1)^2.$$

EXAMPLES

6

2

A graph y = f(x) shifted from being centred on (0, 0) to being centred on (a, b) is written in the form y - b = f(x - a).

EXAMPLES

- 1. A circle with centre (1,2) has form $(x 1)^2 + (y 2)^2 = r^2$.
- A parabola y = x² with turning point (0,0) if shifted to having turning point (3,4) has equation (y − 4) = (x − 3)².

A function is even if f(-x) = f(x) and odd if f(-x) = -f(x).

EXAMPLES

1.
$$y = f(x) = x^3$$
 is odd since $f(-x) = (-x)^3 = -x^3 = -f(x)$.

2.
$$y = f(x) = x^4$$
 is even since $f(-x) = (-x)^4 = x^4 = f(x)$.

2.3 STRAIGHT LINES

The equation of a straight line is y=mx+c

where m is the *gradient* and c is the height at which the line crosses the y-axis, also known as the y-*intercept*.

CIHAN UNIVERSITY SULAIMANIYA

Example

Find the equation of the straight line through the points (-5,7) and (1,3).

Solution

First, find the gradient by substituting the coordinates x1=–5, y1=7, x2=1and y2=3 into the formula for the gradient

EXAMPLES

CIHAN UNIVERSITY SULAIMANIYA

EXAMPLES

CIHAN UNIVERSITY SULAIMANIYA

November 16, 2023

https://scholar.google.com/citations?user=gBsVwVYAAAAJ&hl= en

The domain of a function can be given in different ways: sets of numbers, intervals, and brackets.

EXAMPLES

1. $y = x^2 + 4$ has domain of all real numbers.

2. y = 1/(x-1) has domain $x \neq 1$. That is, all real numbers except x = 1 can be used in this function. If x = 1 then the function is undefined because of division by zero. Sometimes the domain is defined as part of the function such as $y = x^2$ for 0 < x < 3 so that the

domain is restricted to be in the interval zero to three.

3. What is the domain of the function f(x)=12x-1=1? The function is plotted as follows.

The domain of this function is formed by all the real numbers because the values that the variable x can have are all the values between negative and positive infinity. In mathematical language, the domain can be written in the following ways:

$$\operatorname{dom}(f) = \mathbb{R} \qquad ext{or} \quad \operatorname{dom}(f) =] - \infty, +\infty[\ ext{or} \ \operatorname{dom}(f) = \{x \in \mathbb{R}\}$$

Instead of writing the interval $]-\infty, +\infty[$, we simply write R.

EXAMPLE QUESTIONS

- 1. Draw the line y = -2x + 1 for $x \in [0, 1]$.
- 2. Where is the zero of the line y = x 1?
- Where does the line 2y + x − 1 = 0 cross the y axis?
 What is the slope of the line?
- 4. Draw 3y x + 3 = 0 for $x \in [0, 4]$.

Imagine the contraction of Parabola, hyperbola, circle and Ellipse

2.4 QUADRATICS

CIHAN UNIVERSITY SULAIMANIYA

A quadratic (parabola) has the general form $y = ax^2 + bx + c$ and can have either no real zeros, one real zero or two real zeros. If the quadratic has two real zeros, c_1, c_2 then it can also be written as

$$y = a(x - c_1)(x - c_2).$$

n is called the **degree** of the polynomial. Polynomials of degree 2, usually written as $p(x) = ax^2 + bx + c$, are called **quadratic functions**.

What is Parabola Graph?

CIHAN UNIVERSITY SULAIMANIYA

A parabola is a U-shaped curve that is drawn for a quadratic function, f(x) = ax2 + bx + c. The graph of the parabola is downward (or opens down), when the value of a is less than 0, a < 0. The graph of parabola is upward (or opens up) when the value of a is more than 0, a > 0. Hence, the direction of parabola is determined by sign of coefficient 'a'

Vertex

The vertex of parabola will represent the maximum and minimum point of

Axis of Symmetry

The axis of symmetry of parabola always passes through its vertex and is parallel to y-axis

y-intercept

The point at which the parabola graph passes through the y-axis is called yintercept. The parabola of quadratic function passes through an only a single point at the y-axis,

x-intercepts

The points at which the parabola graph passes through the x-axis, are called x-intercepts, which expresses the roots of quadratic function.

The standard form of parabola equation is expressed as follows:

$f(x) = y = ax^2 + bx + c$

The orientation of the parabola graph is determined using the "a" value.

- If the value of a is greater than 0 (a>0), then the parabola graph is oriented towards the upward direction.
- If the value of a is less than 0 (a<0), then the parabola graph opens downwards.

The axis of symmetry from the standard form of the parabola equation is given as x = -b/2a.

Solved Examples

Graphing Parabola Example 1:

Draw a graph for the equation $y = 2x^2 + x + 1$.

Solution:

Then we obtain

x	1	2	3	-1	-2	-3
У	4	11	22	2	7	16

CIHAN UNIVERSITY SULAIMANIYA

November 16, 2023

https://scholar.google.com/citations?user=gBsVwVYAAAAJ&hl=

25

Example:

Draw a graph for the equation $y = 2x^2$.

Solution:

The given equation is $y = 2x^2$. Here a = 2, b = 0 and c = 0. It needs to find the vertex now x = -b/(2a) $\mathbf{x} = \mathbf{0}$ Now putting x = 0 in the equation $y = 2x^2$. $y = 2x^{2}$ $y = 2(0)^2$ y = 0Now putting in different values for x and

calculate the corresponding values for y.

•When
$$x = 1 \Rightarrow y = 2x^2 \Rightarrow y = 2(1)^2 \Rightarrow y = 2$$

•When $x = 2 \Rightarrow y = 2x^2 \Rightarrow y = 2(2)^2 \Rightarrow y = 8$
•When $x = 3 \Rightarrow y = 2x^2 \Rightarrow y = 2(3)^2 \Rightarrow y = 18$
•When $x = -1 \Rightarrow y = 2x^2 \Rightarrow y = 2(-1)^2 \Rightarrow y = 2$
•When $x = -2 \Rightarrow y = 2x^2 \Rightarrow y = 2(-2)^2 \Rightarrow y = 8$
•When $x = -3 \Rightarrow y = 2x^2 \Rightarrow y = 2(-3)^2 \Rightarrow y = 18$

EXAMPLES

Sections of the three quadratic functions

 $y = (x - 1)^2 + 1$, $y = (x - 3)^2$, y = (x - 5)(x - 6)are drawn in the following diagram:

Quadratics

5. Draw the quadratic
$$y = x^2 - 2x + 1$$
 for $x \in [0, 2]$.

6. Where are the zeros of the curve y = (x-3)(x-4)?

HW??

2.5 POLYNOMIALS

A polynomial has the general form

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_i, i = 0 \dots n$, are real numbers, and has the following properties.

- 1. The polynomial has degree n if its highest power is x^n .
- 2. A polynomial of degree n has n zeros (some of which may be complex).
- 3. The constant term in the above polynomial is a_0 .
- 4. The leading order term in the above polynomial is $a_n x^n$ since this is the term that dominates as $x \to \infty$.

Types of Polynomial Functions

There are various types of polynomial functions based on the degree of the polynomial. The most common types are:

- > Constant Polynomial Function: $P(x) = a = ax^{0}$
- Zero Polynomial Function: P(x) = 0; where all a_i's are zero, i = 0, 1, 2, 3, ..., n.
- Linear Polynomial Function: P(x) = ax + b
- > Quadratic Polynomial Function: $P(x) = ax^2+bx+c$
- Cubic Polynomial Function: ax³+bx²+cx+d
- > Quartic Polynomial Function: ax⁴+bx³+cx²+dx+e

EXAMPLES

1. $y = 2x^3 + 4x^2 + 1$ has degree 3, constant term 1 and leading order term $2x^3$.

2. $y = x^2 + 5x + 6$ has two zeros x = -3 and x = -2.

3. The third degree polynomial y = (x - 1)(x - 2)(x - 3)= $x^3 - 6x^2 + 11x - 6$ is plotted below for $x \in [0, 4]$:

2.6 HYPERBOLA

EXAMPLES

A hyperbola centred on the origin is usually written in the form

although other orientations of hyperbolas can be written as

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 or $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1.$

x

The general form of hyperbola

Question: The equation of the hyperbola is given

CIHAN UNIVERSITY SULAIMANIYA

$$\frac{(x-4)^2}{9^2} - \frac{(y-2)^2}{7^2}$$

Find the following: Vertex, Asymptote, Major Axis, Minor Axis and Directrix?

Solution:

Given,

$$x_0 = 4$$

 $y_0 = 2$
 $a = 9$
 $b = 7$
The vertex point: $\begin{array}{c} (a, y_0) \\ and \\ (-a, y_0) \\ are \\ (9, 2) \\ and \\ (-9, 2) \end{array}$
Asymptote
 $y = \frac{7}{9}(x - 4) + 2$
 $y = -\frac{7}{9}(x - 4) + 2$
 $y = -\frac{7}{9}(x - 4) + 2$
 $x = \frac{\pm 9^2}{\sqrt{2^2 + 7^2}} = \pm -\frac{1}{2}$

 $and \quad a = 9$ Minor Axis b = 7

$$x = rac{\pm 9^2}{\sqrt{9^2 + 7^2}} = \pm rac{81}{\sqrt{81 + 49}} = 7.1$$

nptotes.
$$y=y_0+rac{b}{a}x-rac{b}{a}x_0$$

Directrix of a hyperbola
$$x=rac{\pm a^2}{\sqrt{a^2+b^2}}$$

$$(a,y_0) \ and \ (-a,y_0)$$
 vertex

 x_{i}

Asyr

$$\left(y - \sqrt{a^2 + b^2}, y_0
ight)$$

 $(x_0 + \sqrt{a^2 + b^2}, y_0)$

2.7 EXPONENTIAL AND LOGARITHM FUNCTIONS

Exponential Functions Functions of the form $f(x) = a^x$, where the base a > 0 is a positive constant and $a \neq 1$, are called **exponential functions**.

The exponential function is $y = e^x \equiv \exp x$

with its inverse the logarithm function $y = \ln x$.

The general properties of the exponential are listed in the next chapter on transcendental functions. The exponential function $y = e^x$ (upper curve)

The logarithm function is not defined for $x \leq 0$.

and logarithm function $y = \ln x$ (lower curve) are

2.8 TRIGONOMETRIC FUNCTIONS

The graphs of the sine and cosine functions are shown in Figure

https://scholar.google.com/citations?user=gBsVwVYAAAAJ&hl=

CILLANU INIVEDSITY

Ά

Examples

- 1. The function $y = \sin 2x$ will have a period of π .
- The functions sin x and cos x are plotted below for the first period x ∈ [0, 2π], while tan x = sin x / cos x is plotted for x ∈ [-π/2, π/2].

2.9 CIRCLES

CIHAN UNIVERSITY SULAIMANIYA

$$x(t) = r \cos t, \ y(t) = r \sin t, \ t \in [0, 2\pi].$$

EXAMPLES

November 16, 2023

FIGURE (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper semicircle is the graph of a function $f(x) = \sqrt{1 - x^2}$. (c) The lower semicircle is the graph of a function $g(x) = -\sqrt{1 - x^2}$.

EXAMPLES

- The curve x² + 2x + y² + 4y = −4 can be written as (x + 1)² + (y + 2)² = 1, which is a circle centred on (−1, −2) with radius 1.
- The curve represented by x(t) = 2 cos t + 1, y(t) = 2 sin t − 3, t ∈ [0, 2π) is the circle radius 2 centred on (1, −3).

Example 2:

Find the equation of the circle whose center

is (3,5) and the radius is 4 units.

Solution:

Here, the center of the circle is not an origin. Therefore, the general equation of the circle is,

```
(x-3)^{2} + (y-5)^{2} = 4^{2}
x^{2} - 6x + 9 + y^{2} - 10y + 25 = 16
x^{2} + y^{2} - 6x - 10y + 18 = 0
```

Example 3: Equation of a circle is x²+y²-12x-16y+19=0. Find the center and radius of the circle. ???????

<u>Ellipse</u>

An <u>ellipse</u> is the set of points in a plane such that the <u>sum of the</u> <u>distances</u> from two fixed points in that plane stays constant. The two points are each called a focus.

CIHAN UNIVERSITY SULAIMANIYA

Center: (0, 0)	Ellipse with foci on the x - axis	Ellipse with foci on the y -axis
Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$
	where $c = \sqrt{a^2 - b^2}$ and $a > b$	where $c = \sqrt{a^2 - b^2}$ and $a > b$
Vertices	(±a, 0)	(0, ±a)
Foci	(±c, 0)	(0, ±c)
Major Axis	Equation: y = 0 Location: On the x - axis Length: 2a Endpoints: (±a, 0)	Equation: x = 0 Location: On the y - axis Length: 2a Endpoints: (0, ±a)
Minor Axis	Equation: x = 0 Location: On the y - axis Length: 2b Endpoints: (0, ±b)	Equation: y = 0 Location: On the x - axis Length: 2b Endpoints: (±b, 0)
x - intercepts	±α	±b
y - intercepts	±b	±a
Directrices	$x = \pm \frac{a^2}{c}$	$y = \pm \frac{a^2}{c}$
Latus Rectum	Equation: $x = \pm c$ Direction: vertical Length: $\frac{2b^2}{a}$ Endpoints: $\left(-c, \pm \frac{b^2}{a}\right) \& \left(c, \pm \frac{b^2}{a}\right)$	Equation: $y = \pm c$ Direction: horizontal Length: $\frac{2b^2}{a}$ Endpoints: $\left(\pm \frac{b^2}{a}, -c\right) \& \left(\pm \frac{b^2}{a}, c\right)$
Permissible Values	$-a \le x \le a$ $-b \le y \le b$	$-b \le x \le b$ $-a \le y \le a$

November 16, 2023

How one construct different shapes from con

Defining Conic Sections

eccentricity:

amount a conic section deviates from being perfectly circular

circle: e = 0 ellipse: 0 < e < 1 parabola: e = 1 hyperbola: e > 1

every point has the coordinates

the center has the coordinates (h, k)

(Standard Form)

Parabola

November 16, 2023

https://scholar.google.com/citations?user=gBsVwVYAAAAJ&hl=

45

EXAMPLES

CIHAN UNIVERSITY SULAIMANIYA

EXAMPLE QUESTIONS HW???

General

- 30. What type of curve has equation $y^2 + (x-1)^2 2 = 0$?
- 31. What type of curve has equation $2y^2 + (x-1)^2 - 2 = 0$?
- 32. What type of curve has equation $2y + (x 1)^2 2 = 0$?
- 33. What type of curve has equation 2y + (x 1) = 0?
- 34. What type of curve has equation $\frac{2}{y-1} + (x-1) = 0?$
- 35. What is the equation of the quadratic below:

36. What is the equation of the shape below:

1. If
$$f(x) = x^3 + 1$$
 what is $f(2)$?
 6. If $f(x) = x^2 + 1$ find $f(f(x))$.

 2. If $f(x) = x^3 + 1$ what is $f(g)$?
 7. If $f(x) = (x - 1)^2$ and $g(x) = x^2 - 1$ find $f(g(x))$ and $g(f(x))$.

 3. If $f(x) = x^3 + 1$ and $g(x) = (x - 1)$ what is $f(g(x))$?
 8. If $f(x) = \frac{1}{x} + 1$ find the inverse $f^{-1}(x)$.

 4. If $f(x) = x^3 + 1$ and $g(x) = (x - 1)$ what is $f(g(b))$?
 9. If $f(x) = \frac{1}{x + 1}$ find the inverse $f^{-1}(x)$.

 5. If $f(x) = x^2$ and $g(z) = \sin z$ find $f(g(a))$ and $g(f(x))$.
 10. If $f(x) = \frac{1}{x^2} + 1$ find the inverse $f^{-1}(x)$.

 1. 9
 2. $g^3 + 1$
 3. $(x - 1)^3 + 1$
 4. $(b - 1)^3 + 1$
 5. $f(g(a)) = \sin^2(a), g(f(x)) = \sin x^2$

 6. $f(f(x)) = (x^2 + 1)^2 + 1$
 7. $f(g(x)) = (x^2 - 2)^2$
 $g(f(x)) = (x - 1)^4 + 8$
 $f^{-1}(x) = \frac{1}{x}$

6.
$$f(f(x)) = (x^2 + 1)^2 + 1$$
 7. $f(g(x)) = (x^2 - 2)^2$, $g(f(x)) = (x - 1)^4 \cdot 8$. $f^{-1}(x) = 9$. $f^{-1}(x) = \frac{1}{x} - 1$ 10. $f^{-1}(x) = \frac{1}{\sqrt{x - 1}}$

November 16, 2023

Α

2.11 EXAMPLE QUESTIONS

https://scholar.google.com/citations?user=gBsVwVYAAAAJ&hl= en

48

x-1

EXAMPLE QUESTIONS

Sines and cosines

- 17. Draw the curve $y = 2 \sin 3x$ from x = 0 to $x = \pi$.
- 18. Draw the curve $y = \cos \frac{x}{2}$ from x = 0 to $x = 4\pi$.
- 19. Draw the curve $y = \cos 2x + 1$ from x = 0 to $x = 2\pi$.

HW???

- 20. What is the period of $y = \sin(x+1)$?
- 21. What is the period of $y = \cos 3x$?
- 22. What is the period of $y = \sin(3x + 1)$?

EXAMPLE QUESTIONS

Circles and ellipses

- 23. Draw the circle $y^2 + (x 2)^2 = 4$.
- 24. Draw the ellipse $y^2 + 2x^2 = 1$.

25. Draw the ellipse
$$4y^2 + (x-1)^2 = 1$$
.

26. Where does the ellipse $(x - 1)^2 + 2y^2$ = 1 cut the x axis?

- 27. What is the equation for an ellipse centred on (0,0) with x axis twice as long as the y axis?
- 28. What is the equation for a circle centred on (1,2) with radius 2?
- 29. What is the equation for a circle centred on (a, 2) with radius 3?

EXAMPLES

- The curve x² + 2x + y² + 4y = −4 can be written as (x + 1)² + (y + 2)² = 1, which is a circle centred on (−1, −2) with radius 1.
- 3. The curve represented by $x(t) = 2\cos t + 1$, $y(t) = 2\sin t 3$, $t \in [0, 2\pi)$ is the circle radius 2 centred on (1, -3).

THANKS FOR YOUR ATTENTION

November 16, 2023

