Mathematics-1-

For Engineering

By
Prof. dr salah Raza saeed

Chapter 3 Transcendental Functions

Prof. dr. Salah Raza Saeed

Contents

Transcendental Functions

1. Inverse Functions
2. Exponential Fun
3. Index Laws
4. Logarithm Rules
5. Trigonometric Functions
6. Trigonometric Identities
7. Hyperbolic Functions
8. Example Questions

OVERVIEW

Functions can be classified into two broad complementary groups called
$>$ algebraic functions and
$>$ transcendental functions
In this chapter we investigate the calculus of important transcendental functions, including :

- the logarithmic,
- exponential,
- inverse trigonometric, and
- hyperbolic functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain.

DEFINITION A function $f(x)$ is one-to-one on a domain D if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$ in D.

EXAMPLE 1

(a) $f(x)=\sqrt{x}$ is one-to-one on any domain of nonnegative numbers because $\sqrt{x_{1}} \neq$ $\sqrt{x_{2}}$ whenever $x_{1} \neq x_{2}$.
(b) $g(x)=\sin x$ is not one-to-one on the interval $[0, \pi]$ because $\sin (\pi / 6)=\sin (5 \pi / 6)$. In fact, for each element x_{1} in the subinterval $[0, \pi / 2)$ there is a corresponding element x_{2} in the subinterval $(\pi / 2, \pi]$ satisfying $\sin x_{1}=\sin x_{2}$, so distinct elements in the domain are assigned to the same value in the range most once. If the function intersects the line more than once, it assumes the same y value for at least two different x-values and is therefore not one-to-one

(a) One-to-one: Graph meets each horizontal line at most once.

(b) Not one-to-one: Graph meets one or more horizontal lines more than once.

FIGURE 1 (a) $y=x^{3}$ and $y=\sqrt{x}$ are one-to-one on their domains $(-\infty, \infty)$ and $[0, \infty)$. (b) $y=x^{2}$ and $y=\sin x$ are not one-to-one on their domains $(-\infty, \infty)$.

Inverse Functions

An inverse function or an anti function is defined as a function, which can reverse into another function. In simple words, if any function " f " takes x to y then, the inverse of "f" will take y to x. If the function is denoted by f' or ' F ', then the inverse function is denoted by $f^{\prime \prime}$ or F^{-1}.

The symbol f^{-1} for the inverse of f is read " f inverse." The " -1 " in f^{-1} is not an exponent; $f^{-1}(x)$ does not mean $1 / f(x)$. Notice that the domains and ranges of f and f^{-1} are interchanged.

DEFINITION Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by
$f^{-1}(b)=a$ if $f(a)=b$.
The domain of f^{-1} is R and the range of f^{-1} is D.

EXAMPLE 2| Suppose a one-to-one function $y=f(x)$ is given by a table of values

x	1	2	3	4	5	6	7	8
$f(x)$	3	4.5	7	10.5	15	20.5	27	34.5

A table for the values of $x=f^{-1}(y)$ can then be obtained by simply interchanging the values in the columns of the table for f :

y	3	4.5	7	10.5	15	20.5	27	34.5
$f^{-1}(y)$	1	2	3	4	5	6	7	8

Only a one-to-one function can have an inverse

$\left(f^{-1} \circ f\right)(x)=x, \quad$ for all x in the domain of f
$\left(f \circ f^{-1}\right)(y)=y, \quad$ for all y in the domain of f^{-1} (or range of f)

EXAMPLE 3 Find the inverse of $y=\frac{1}{2} x+1$, expressed as a function of x. Solution

1. Solve for x in terms of $y: \quad y=\frac{1}{2} x+1$ then $2 y=x+2$ and

$$
x=2 y-2
$$

2. Interchange x and $y: \quad y=2 x-2$.

The inverse of the function $f(x)=(1 / 2) x+1$ is the function $f^{-1}(x)=2 x-2$. To check, we verify that both composites give the identity function:

$$
\begin{aligned}
& f^{-1}(f(x))=2\left(\frac{1}{2} x+1\right)-2=x+2-2=x \\
& f\left(f^{-1}(x)\right)=\frac{1}{2}(2 x-2)+1=x-1+1=x
\end{aligned}
$$

FIGURE 7.3 Graphing $f(x)=(1 / 2) x+1$ and $f^{-1}(x)=2 x-2$ together shows the graphs' symmetry with respect to the line $y=x$ (Example 3).

3.1 EXPONENTIAL FUNCTION

An exponential function is defined by

$$
f(x)=a^{x}, \quad \text { so that } \quad x=\log _{a} f, \quad a>0
$$

where a is the base and x is the index.
The most useful exponential function is $f(x)=e^{x} \equiv \exp x$ where $e=2.71828$.

EXAMPLES

1. If $8=x^{3}$ then $x=8^{1 / 3}=2$.
2. If $3=\log _{2} y$ then $y=2^{3}=8$.
3. If $2=\log _{10} y$ then $y=10^{2}=100$.
4. If $y=\log _{2} 16$ then since $16=2^{4}, y=4$.

Exponential function

Exponential functions increase or decrease very rapidly with changes in the independent variable. They describe growth or decay in many natural and industrial situations. The variety of models based on these functions partly accounts for their importance.

Exponential Change

In modeling many real-world situations, a quantity y increases or decreases at a rate proportional to its size at a given time
I. Examples of such quantities include the amount of a decaying radioactive material, the size of a population, and the temperature difference between a hot object and its surrounding medium. Such quantities are said to undergo exponential change.

3.2 INDEX LAWS

1. $a^{i}=\underbrace{a . a \ldots a}_{i \text { times }}$, for i an integer.
$\left.\begin{array}{l}\text { 2. } a^{m} a^{n}=a^{m+n} \\ \text { 3. } \frac{a^{m}}{a^{n}}=a^{m-n}\end{array}\right\}$ Equal Bases Rule
2. $a^{m} b^{m}=(a b)^{m}$
3. $\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}$ Equal Indices Rule
4. $a^{-n}=\frac{1}{a^{n}}$
5. $\left(a^{m}\right)^{n}=a^{m n} \quad$ Power of a Power Rule
6. $a^{0}=1$

3.3 LOGARITHM RULES

1. $\log _{a}(x y)=\log _{a} x+\log _{a} y \quad$ Log of a Product
2. $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \quad$ Log of a Quotient
3. $\log _{a} x^{p}=p \log _{a} x \quad$ Log of a Power
4. $\log _{a}\left(a^{x}\right)=x$
5. $a^{\log _{a} x}=x$
6. $\log _{a} 1=0 \quad$ and $\quad \log _{a} a=1$

The naturallog, or \ln, is the inverse of e. The letter ' e 'represents a mathematical constant also known as the natural exponent. Like π, e is a mathematical constant and has a set value. The value of e is equal to approximately 2.71828 .
Product Rule
$\cdot \ln (\mathrm{x})(\mathrm{y})=\ln (\mathrm{x})+\ln (\mathrm{y})$
-The natural log of the multiplication of x and y is the sum of the \ln of x and \ln of y.
-Example: $\ln (8)(6)=\ln (8)+\ln (6)$
Quotient Rule
$\cdot \ln (x / y)=\ln (x)-\ln (y)$
-The natural log of the division of x and y is the difference of the \ln of x and \ln of y.
-Example: $\ln (7 / 4)=\ln (7)-\ln (4)$
Reciprocal Rule
$\cdot \ln (1 / x)=-\ln (x)$
-The natural log of the reciprocal of x is the opposite of the \ln of x.

- Example: $\ln (1 / 3)=-\ln (3)$

Power Rule
$\cdot \ln \left(x^{y}\right)=y^{*} \ln (x)$
-The naturallog of x raised to the power of y is y times the \ln of x.
-Example: $\ln \left(5^{2}\right)=2 * \ln (5)$

3.4 TRIGONOMETRIC FUNCTIONS

Angles

Angles are measured in degrees or radians.

$$
s=r \theta \quad(\theta \text { in radians }) .
$$

FIGURE The radian measure of the central angle $A^{\prime} C B^{\prime}$ is the number $\theta=s / r$.
For a unit circle of radius $r=1, \theta$ is the length of arc $A B$ that central angle $A C B$ cuts from the unit circle.

If the circle is a unit circle having radius $r=1$,

$$
\begin{array}{ll}
\pi \text { radians }=180^{\circ} & \text { and } \quad 1 \text { radian }=\frac{180}{\pi}(\approx 57.3) \text { degrees } \\
& \text { or } \quad 1 \text { degree }=\frac{\pi}{180}(\approx 0.017) \text { radians. }
\end{array}
$$

TABLE 1	Angles measured in degrees and radians													
Degrees	$\mathbf{- 1 8 0}$	$\mathbf{- 1 3 5}$	$\mathbf{- 9 0}$	$\mathbf{- 4 5}$	$\mathbf{0}$	$\mathbf{3 0}$	$\mathbf{4 5}$	$\mathbf{6 0}$	$\mathbf{9 0}$	$\mathbf{1 2 0}$	$\mathbf{1 3 5}$	$\mathbf{1 5 0}$	$\mathbf{1 8 0}$	$\mathbf{2 7 0}$
$\boldsymbol{0}$ (radians)	$-\pi$	$\frac{-3 \pi}{4}$	$\frac{-\pi}{\mathbf{2}}$	$\frac{-\pi}{4}$	$\mathbf{0}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{\mathbf{2} \pi}{\mathbf{3}}$	$\frac{\mathbf{3} \pi}{4}$	$\frac{\mathbf{5} \pi}{\mathbf{6}}$	π	$\frac{\mathbf{3} \pi}{\mathbf{2}}$
$\mathbf{2} \pi$														

The Six Basic Trigonometric Functions

We define the trigonometric functions in terms of the coordinates of the point $P(x, y)$
sine: $\sin \theta=\frac{y}{r} \quad$ cosecant: $\quad \csc \theta=\frac{r}{y}$ cosine: $\cos \theta=\frac{x}{r} \quad$ secant: $\quad \sec \theta=\frac{r}{x}$ tangent: $\tan \theta=\frac{y}{x} \quad$ cotangent: $\quad \cot \theta=\frac{x}{y}$ $\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}$

FIGURE

$\sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta}$
The trigonometric functions of a general angle θ are defined in terms of x, y, and r.

CIHAN UNIVERSITY

 SULAIMANIYA
3.4 TRIGONOMETRIC FUNCTIONS

The unit circle can be used as an aid for finding the sin and cos of common angles. For example, $\cos \pi / 6=\sqrt{3} / 2$. By symmetry all the other major angles can be found.

FIGURE
The CAST rule,

DEFINITION A function $f(x)$ is periodic if there is a positive number p such that $f(x+p)=f(x)$ for every value of x. The smallest such value of p is the period of f.

EXAMPLES
$\sin (\theta+2 \pi)=\sin \theta, \tan (\theta+2 \pi)=\tan \theta$,
Similarly, $\cos (\theta-2 \pi)=\cos \theta$,

$$
\sin (\theta-2 \pi)=\sin \theta
$$

Periods of Trigonometric Functions

Period π : $\quad \tan (x+\pi)=\tan x$

$$
\cot (x+\pi)=\cot x
$$

Period 2 π : $\quad \sin (x+2 \pi)=\sin x$

$$
\cos (x+2 \pi)=\cos x
$$

$$
\sec (x+2 \pi)=\sec x
$$

$$
\csc (x+2 \pi)=\csc x
$$

CIHAN UNIVERSITY
SULAIMANIYA

Even

$$
\begin{aligned}
& \cos (-x)=\cos x \\
& \sec (-x)=\sec x
\end{aligned}
$$

Odd

$$
\begin{aligned}
& \sin (-x)=-\sin x \\
& \tan (-x)=-\tan x \\
& \csc (-x)=-\csc x \\
& \cot (-x)=-\cot x
\end{aligned}
$$

FIGURE Graphs of the six basic trigonometric functions using radian measure. The shading for each trigonometric function indicates its periodicity.

The coordinates of any point $P(x, y)$ $x / r=\cos \theta \quad \neg x=r \cos \theta$,
and $y / r=\sin \theta \Rightarrow y=r \sin \theta$.
When $r=1$ we can apply the Pythagorean theorem to the reference right triangle

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$.1

Dividing this identity in turn by $\cos ^{2} \theta$ and $\sin ^{2} \theta$ gives

$$
\begin{aligned}
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

Addition Formulas

$$
\begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\sin (A+B) & =\sin A \cos B+\cos A \sin B
\end{aligned}
$$

Double-Angle Formulas

$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\sin 2 \theta=2 \sin \theta \cos \theta$

Half-Angle Formulas

$$
\begin{aligned}
& \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \\
& \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}
\end{aligned}
$$

The Law of Cosines

If a, b, and c are sides of a triangle $A B C$ and if θ is the angle opposite c, then

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta .
$$

Inverse Trigonometric Functions

Defining the Inverses

The six basic trigonometric functions are not one-To-one (their values repeat periodically). However, we can restrict their domains to intervals on which they are one-To-one

DEFINITION

$\boldsymbol{y}=\sin ^{-1} \boldsymbol{x}$ is the number in $[-\pi / 2, \pi / 2]$ for which $\sin y=x$. $\boldsymbol{y}=\cos ^{-1} \boldsymbol{x}$ is the number in $[0, \pi]$ for which $\cos y=x$.

$$
\begin{aligned}
& \text { The sine function increases from }-1 \text { at } x=-\pi / 2 \text { to }+1 \text { at } x=\pi \\
& \text { the interval }[-\pi / 2, \pi / 2] \text {, we make it one-to-one, so that it ha } \\
& \text { Similar domain restrictions can be applied to all six trigonometric fund } \\
& \qquad y=\sin x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
& \text { Domain: }[-\pi / 2, \pi / 2] \\
& \text { Range: }[-1,1]
\end{aligned}
$$

(a) We see that

$$
\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3} \quad \text { because } \sin (\pi / 3)=\sqrt{3} / 2 \text { and } \pi / 3
$$

belongs to the range $[-\pi / 2, \pi / 2]$ of the arcsine function.
(b) We have $\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$
because $\cos (2 \pi / 3)=-1 / 2$ and $2 \pi / 3$ belongs to the range $[0, \pi]$ of the arccosine function.

DEFINITION

$\boldsymbol{y}=\boldsymbol{\operatorname { t a n }}^{-1} \boldsymbol{x}$ is the number in $(-\pi / 2, \pi / 2)$ for which $\tan y=x$.
$\boldsymbol{y}=\cot ^{-1} \boldsymbol{x}$ is the number in $(0, \pi)$ for which $\cot y=x$.

$y=\sin x$
Domain: $[-\pi / 2, \pi / 2]$
Range: $[-1,1]$

$y=\cot x$
Domain: $(0, \pi)$

$y=\cos x$
Domain: $[0, \pi]$
Range: $[-1,1]$

$y=\sec x$
Domain: $[0, \pi / 2) \cup(\pi / 2, \pi]$

$y=\tan x$
Domain: $(-\pi / 2, \pi / 2)$
Range: $(-\infty, \infty)$

$y=\csc x$
Domain: $[-\pi / 2,0) \cup(0, \pi / 2]$

Caution The - 1 in the expressions for the inverse means "inverse." It does not mean reciprocal. For example, the reciprocal of $\sin x$ is $(\sin x)-\mathrm{I}=\mathrm{I} / \sin \mathrm{x}=\csc \mathrm{x}$.

$y=\sin ^{-1} x$	or	$y=\arcsin x$
$y=\cos ^{-1} x$	or	$y=\arccos x$
$y=\tan ^{-1} x$	or	$y=\arctan x$
$y=\cot ^{-1} x$	or	$y=\operatorname{arccot} x$
$y=\sec ^{-1} x$	or	$y=\operatorname{arcsec} x$
$y=\csc ^{-1} x$	or	$y=\operatorname{arccsc} x$

3.6 HYPERBOLIC FUNCTIONS

The hyperbolic functions are formed by taking combinations of the two exponential functions e^{x} and e^{-x}.

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2}
$$

Definitions and Identities

1. $2 \sinh x \cosh x=2\left(\frac{e^{x}-e^{-x}}{2}\right)\left(\frac{e^{x}+e^{-x}}{2}\right)=\frac{e^{2 x}-e^{-2 x}}{2}=\sinh 2 x$.
$\cosh ^{2} x-\sinh ^{2} x=1$
2. $\sinh 2 x=2 \sinh x \cosh x$ $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$

(a)

Hyperbolic sine:
$\sinh x=\frac{e^{x}-e^{-x}}{2}$

(b)

Hyperbolic cosine:
$\cosh x=\frac{e^{x}+e^{-x}}{2}$

$$
\begin{array}{cc}
\hline y=1 \\
y=\operatorname{coth} x & 2 \\
\text { (c) } \\
\text { Hyperbolic tangent: } \\
\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
\hline
\end{array}
$$

1. Simplify as much as possible
2. Solve for t using natural logarithms:
(i) $5^{t}=7$
(ii) $2=(1.02)^{t}$
(iii) $3^{t} 7=2^{t} 5$
(iv) $Q=Q_{0} a^{n t}$
(v) $y=3-2 \ln t$
(vi) $3 y=1+2 e^{4 t}$
(i) $6 x^{3} y^{-2} \times \frac{1}{24} x^{-5} y^{4}$
(ii) $8^{-\frac{2}{3}}$
(iii) $2 \log _{10} 5+\log _{10} 8-\log _{10} 2$
(iv) $3^{-\log _{3} P}$
(v) $\ln x^{2}+\ln y-\ln x-\ln y^{2}$
(vi) $e^{2 \ln x}$
2

5. Evaluate

(iii) $\cos \left(\frac{11 \pi}{6}\right)$
(iv) $\sec \left(\frac{4 \pi}{3}\right)$
(i) $\tan (\pi)$
(ii) $\sin \left(\frac{6 \pi}{8}\right)$
6. Simplify
(i) $\frac{1}{\cos ^{2} \theta}-\tan ^{2} \theta$
(ii) $(\sin x+\cos x)^{2}+(\sin x-\cos x)^{2}$
(iii) $\frac{\tan \theta}{\sqrt{1+\tan ^{2} \theta}}$
3. If $\ln s=2$ and $\ln t=3$ calculate
(i) $\ln (s t)$
(ii) $\ln \left(s t^{2}\right)$
(iii) $\ln (\sqrt{s t})$
(iv) $\ln \frac{s}{t}$
(v) $\ln \frac{s}{t^{3}}$
4. If $x=\ln 3$ and $y=\ln 5$ then find
(i) $e^{x} e^{y}$
(ii) e^{x+y}
(iii) $e^{2 x}$
(iv) $e^{x}+e^{y}$
7. Solve the following for values of $\boldsymbol{\theta}$ between 0 and 2π
(i) $\cos ^{2} \theta+3 \sin ^{2} \theta=2$
(ii) $2 \cos ^{2} \theta=3 \sin \theta$
9. Use the trigonometric addition of angle formulae to show $\cos \frac{\pi}{12}=\frac{1}{4}(\sqrt{6}+\sqrt{2})$.
8. Prove the following identities:
11. Use the multiple angle formulae to find $\cos \frac{\pi}{12}$. $\Delta-\frac{\pi}{4} \quad$ (ii) $\theta=13 \frac{\pi}{6} \quad$ (iii) $\theta=\frac{2 \pi}{3}$
13. Is $f(x)=x \cos x$ an odd or even function?
12. In an experiment you have to calculate the time to melt : block of ice using the formula

$$
t=\frac{l\left(\lambda \rho-c T_{0} \rho\right)}{h T_{a}} \quad \text { where }
$$

$l=0.1, \quad \lambda=3 \times 10^{5}$,
$c=2 \times 10^{3}, \quad T_{0}=-20$,
AND

$$
\begin{aligned}
& T_{a}=20, \quad h=10 \\
& \rho=1 \times 10^{3}
\end{aligned}
$$

find t

THANKS FOR YOUR ATTENTION

