
Mobile Application
State and gesture

Flutter State Management

The widget can be classified into two categories, one is a Stateless

widget, and another is a Stateful widget. The Stateless widget does not

have any internal state. It means once it is built, we cannot change or

modify it until they are initialized again. On the other hand, a Stateful

widget is dynamic and has a state. It means we can modify it easily

throughout its lifecycle without reinitialized it again.

Stateful Widget

• A stateful Widget means a widget that has a mutable state.

The state is information that can be read synchronously

when the widget is built and might change during a widget’s

lifetime.

Creating a stateful widget

• A stateful widget is implemented by two classes: a subclass of

StatefulWidget and a subclass of State.

• The state class contains the widget’s mutable state and the widget’s

build() method.

• When the widget’s state changes, the state object calls setState(),

telling the framework to redraw the widget.

StatefulWidget

class Myclass extends StatefulWidget {

@override
_MyclassState createState() => _MyclassState();

}

class _MyclassState extends State<Myclass> {
@override
Widget build(BuildContext context) {
return Container();

}
}

What is State?

A state is information that can be read when the widget is built and

might change or modified over a lifetime of the app. If you want to

change your widget, you need to update the state object, which can be

done by using the setState() function available for Stateful widgets.

The setState() function allows us to set the properties of the

state object that triggers a redraw of the UI.

Types of State

• In Flutter, the state management categorizes into two conceptual

types, which are given below:

1.Ephemeral State

2.App State

Ephemeral State

• This state is also known as UI State or local state. It is a type of state

which is related to the specific widget, or you can say that it is a state

that contains in a single widget.

App State

• It is different from the ephemeral state. It is a type of state that we

want to share across various parts of our app and want to keep

between user sessions. Thus, this type of state can be used globally.

Sometimes it is also known as application state or shared state.

Example

• in this example we are learning first counter app in
flutter.

Tools:
• Main method
• runApp
• MaterialApp  home
• Scaffold  appbar and body
• Floating action button
• setState()

setState:

• setState is one of state management pattern in flutter.

• Calls setState() to update the UI. If remove the setState can not

data refresh your screen.

import 'package:flutter/material.dart';
void main(){
runApp(Myapp());

}
class Myapp extends StatefulWidget {
@override
_MyappState createState() => _MyappState();

}
class _MyappState extends State<Myapp> {
 int count=0; //define a variable
@override
Widget build(BuildContext context) {
return MaterialApp(
home: Scaffold(
appBar: AppBar(
title: Text(“ App counter"),

),
body: Center(
child: Text("counter $count ",style:

TextStyle(
fontSize: 24,color: Colors.black,

),)
),

floatingActionButton: FloatingActionButton(
onPressed: (){

setState ((){
count+=1;
});
},
child: Text("click"),
),

),
);

}
}

InkWell

• The InkWell widget in Flutter is used to make interactive elements

respond to touch gestures. It provides a visual splash or highlight

effect when tapped

Gestures

• Gestures are an interesting feature in Flutter that allows us to interact with the mobile

app (or any touch-based device). Generally, gestures define any physical action or

movement of a user in the intention of specific control of the mobile device. Some of the

examples of gestures are:

• When the mobile screen is locked, you slide your finger across the screen to unlock it.

• Tapping a button on your mobile screen, and

• Tapping and holding an app icon on a touch-based device to drag it across screens.

Gesture Detector

• The GestureDetector is a non-visual widget primarily used for

detecting the user’s gesture. To identify a gesture targeted on a

widget, the widget can be placed inside GestureDetector widget.

home: Scaffold(
appBar: AppBar(

title: Text("counter number"),
),
body: Center(

child:
Container(

 child:GestureDetector(
 onTap: (){
 print("hello");
 },

child: Center(
child: Container(

child: Text("click me",style: TextStyle(
color: Colors.white,

),),),),),
height: 60,
width: 100,
color: Colors.black,

),),),
); }}

Tap − Touching the surface of the

device with fingertip for a short period

and then releasing the fingertip.

Double Tap: It is similar to a

Tap gesture, but you need to

tapping twice in a short

time. This gesture contains

the following events:

•onDoubleTap

home: Scaffold(
appBar: AppBar(

title: Text("counter number"),
),
body: Center(

child:
Container(

 child:GestureDetector(
 onDoubleTap: (){
 print("hello");
 },

child: Center(
child: Container(

child: Text("click me",style: TextStyle(
color: Colors.white,

),),),),),
height: 60,
width: 100,
color: Colors.black,

),),),
); }}

Homework

• Pinch − Pinching the surface of the device using two fingers.

• Spread/Zoom − Opposite of pinching.

• Drag

Scaffold(

appBar: AppBar(

title: const Text("InkWell and

Gesture"),),

body: Center(

child: Column(

children: [

InkWell(

onTap: () { print("ink"); },

child: Container(

height: 100,

width: 250,

color: Colors.amberAccent,

alignment: Alignment.center,

child: const Text("Inkwell"),

),),

const SizedBox(

height: 30,),

GestureDetector(

onTap: () { print("gesture"); },

child: Container(

height: 100,

width: 250,

color: Colors.greenAccent,

alignment: Alignment.center,

child: const Text("Gesture"),

),

),

],

),

),

);

