

Clinical Biochemistry

Lab. 5

Measurement of Serum Creatinine

Prepared by:

Darya Shorsh Hamad

Mcs. in Clinical Biochemistry

E-mail: darya.shorsh@sulicihan.edu.krd

Introduction

Clinical Significance

- ☐ Creatinine is synthesized in the body at a fairly constant rate from creatine.
- ☐ Creatinine in the blood is then removed by filtration trough the **glomeruli of the kidney** for excretion in the urine.
- ☐ the *creatinine clearance (CC) test* is one of the **most sensitive tests** to **diagnose** renal function especially the glomerular filtration rate (GFR).
- □ Elevated levels of creatinine in serum are usually associated with renal diseases, especially those related to GFR such as glomerular nephritis.

Quantitative measurement of Creatinine

Aim: Quantitative measurement of Creatinine in the serum

Principle

This procedure is based upon a modification of the original picrate reaction (Jaffe). Creatinine under alkaline conditions reacts with picrate ions forming a **reddish complex**. The formation rate of the complex measured through the increase of absorbance in a prefixed interval of time is proportional to the concentration of creatinine in the sample.

Reagent Composition

R1: Picric acid

R2: Alkaline Reagent: NaOH

R3: Standard: 2mg/dL

REAGENT PREPARATION

Working reagent. Mix 1 volume of R1 + 1 volume of R2. Stable for 1 week at room temperature, stored tightly closed and protected from light.

Samples

- ✓ Serum or heparinized plasma, and urine.
- ✓ Creatinine in serum or plasma is stable up to 24 hours at 2-8°C. Freeze for longer storage.
- ✓ Creatinine from random samples of urine is stable for 4 days at 2-8°C. Freeze for longer storage.
- ✓ The 24-hour urine samples for the Clearance Test should be collected on a preservative (fluoride thymol) and immediately refrigerated.

Procedure

1. Adjust the instrument to zero with distilled water

	Blank	Standard	Sample
Working Reagent	1ml	1ml	1ml
Standard Solution		100μl	
Distilled Water	100μl		
Serum			100μl

- 1. Mix and start stop watch
- 2. Read the absorbance for each tubes at 592 nm (A1) after 30 seconds and after 90 seconds (A2) of the sample addition
- 3. Calculate $\triangle A$ (A2-A1)

Calculation

× Standard Concentration

Creatinine (mg/dL) =
$$\frac{(\Delta A) \text{ Sample} - (\Delta A) \text{ Blank}}{(\Delta A) \text{ Standard} - (\Delta A) \text{ Blank}}$$

Standard Concentration: 2mg/dl

Reference Intervals:

Male: 0.7 - 1.4 mg/dL

Female: 0.6 - 1.1mg/dL

Calculation of Creatinine Clearance

Cockcroft-Gault Formula for Estimating Creatinine Clearance

CrCI (mL/min) =
$$\frac{(140\text{-age}) \times \text{Lean Body Weight (kg)}}{\text{Serum Creatinine (mg/dL)} \times 72} (x 0.85 \text{ if female})$$

Reference Intervals: Clearance Test

Men	97 - 137 mL/min
Women	88 - 128 mL/min