Cihan University - Sulaimaniya

Clinical Biochemistry

Lab 2

Colorimetry - Lambda max (λmax)

Prepared by :

Darya Shorsh Hamad

Mcs. in Clinical Biochemistry E-mail: darya.shorsh@sulicihan.edu.krd

Academic Year 2023-2024

Principle

Colorimetric analysis is a method to analyze **a color**. In this case a specific reagent is used to react with a specific component in the serum and a colored complex is formed which is directly proportional to the concentration of the compound in the serum.

Example: The blood urea colorimetric procedure is a modification of the Berthelot reaction. Urea is hydrolyzed in the presence of water and urease to produce ammonia and carbon dioxide. Ammonium ions react with hypochlorite and salicylate to give **a green dye.** The intensity of the color formed **at 578 nm** is proportional to the **urea concentration** in the sample.

Urea + H₂O $\xrightarrow{\text{Urease}}$ 2 NH₃ + CO₂ NH₃ + Salicylate + Hypochlorite \longrightarrow 2,2- Dicarboxyindophenol

Requirements of Colorimetric Analysis

In colorimetric assays three tubes should be prepared as follow:1. Reagent blank: which contain the reagents only (without any test or standard substance) and used to set instrument at zero

Test

OD=?

C=?

Standard

C=100mg/dl

OD=?

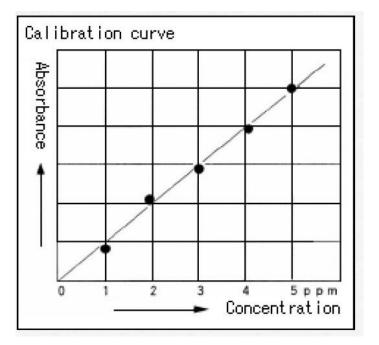
blank

absorbance (Any color given by the reagents used in the analysis can be detected and eliminated)

2. Standard solution: it is a substance identical to the test solution with a known concentration (it is different from an assay to another according to the measured parameter)

3. Test solution: This contains the unknown concentration of the substance together with the reagents used in the test.

Calculation of sample concentration can be done by two methods:


1. Using standard concentration:

2. Using calibration curve

 \Box Slandered calibration curve are obtained by measuring the absorbance of a series of standard solutions.

 \Box After a series of standard solutions are analyzed a graph of absorbance versus concentration is drawn and it will be a linear relationship.

 \Box Solutions of unknown concentration are tested for absorbance; these absorbance results are read from the curve to determine concentration.

Sample concentration = OD of test – OD blank OD of standard – OD blank OD of standard – OD blank

LAMBDA (λ) MAX

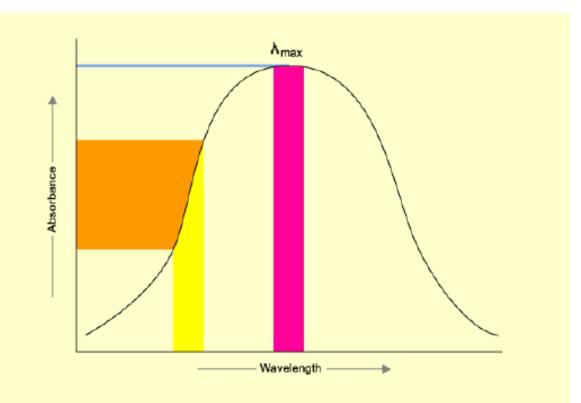
The wavelength which a substance shows **maximum absorbance** is called **maximum absorption or** λ **max**.

The value of λ max is important for several reasons:

> This wavelength is **characteristic of each compound**

> It provides information on the **electronic structure of the analyte**

> It ensures highest sensitivity and minimize deviations from **Beer's Law.**


- The principle behind the determination of Lambda max of any colored substance is that the colored substance absorbs maximum radiation at a particular wavelength in the visible region (400-800 nm).
- This colored substances absorb the radiation in different manner depending upon the wavelengths used.
- \Box This unique property of maximum absorption at a particular wavelength is known as λ max and is useful for identification of that particular substance.
- \Box λ max is not usually affected by concentration used.

Procedure:

- Weight accurately 100 mg of KMNO4 and dissolve in 30 ml of distilled water in a volumetric flask.
- 2. Make up the volume up to 100ml with distilled water.
- Now take 4 ml of above solution and dilute to 20 ml with distilled water in order to get resulting solution (40µg/ml)
- 4. Switch on the colorimeter and allow to stabilize for 15 minutes.
- 5. Set the absorbance at zero by using distilled water as blank.
- 6. Now set 100% transmittance by distilled water.
- 7. Take the absorbance of the resulting solution at different wavelengths
- 8. Plot the graph between wavelength vs observed absorbance.

Calculation of LAMBDA (λ) MAX

We can determine λ max by plotting absorbance vs wavelength in graph.

Wavelength (λ)	Absorbance (OD)
460	?
480	?
500	?
520	?
540	?
560	?
580	?
600	?
620	?