

Cihan University/ Sulaymaniyah

**College of Health Science** 

**Medical Laboratory Analysis** 

4<sup>th</sup> Stage- 1<sup>st</sup> Semester

**Clinical Immunology** 

**Lecture- 9: Immunologic Tolerance and Autoimmunity** 

2023-2024

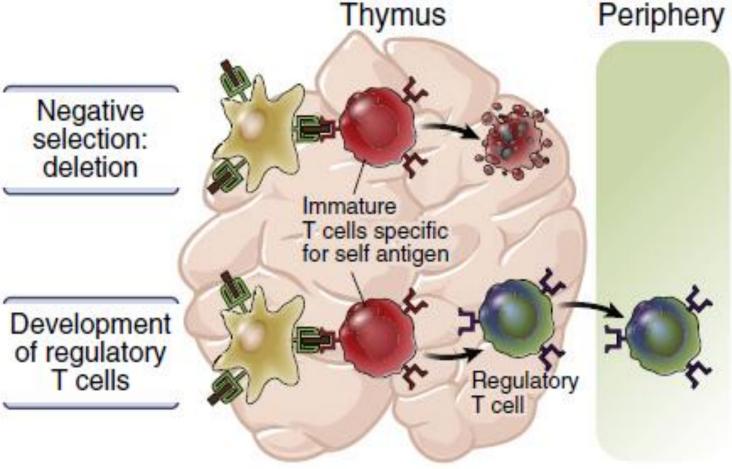
Lecturer: Mohammed T. Salih

# **Immunologic Tolerance**



- Immunologic tolerance is a lack of response to antigens that is induced by exposure of lymphocytes to these antigens.
- The lymphocytes may be activated to proliferate and to differentiate into effector and memory cells, leading to a productive immune response; antigens that elicit such a response are said to be immunogenic.
- Or the lymphocytes may be functionally inactivated or killed, resulting in tolerance; antigens that induce tolerance are said to be **tolerogenic**.
- In some situations, the antigen-specific lymphocytes may not react in any way; this
  phenomenon has been called immunologic ignorance, implying that the lymphocytes simply
  ignore the presence of the antigen.
- Normally, **microbes are immunogenic** and **self antigens are tolerogenic**.

# **Central T Lymphocyte Tolerance**



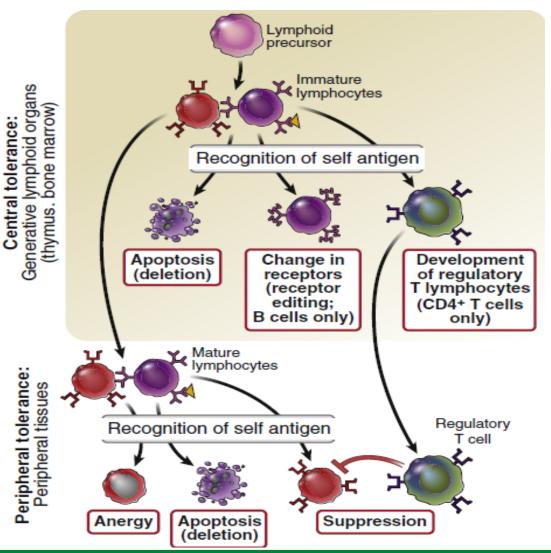

- Immunologic tolerance to different self antigens may be induced when developing lymphocytes encounter these antigens in the generative (central) lymphoid organs, a process called central tolerance.
- The central tolerance in T cells are death of immature T cells and the generation of CD4+ regulatory T cells .
- The lymphocytes that develop in the thymus consist of cells with receptors capable of recognizing many antigens, both self and foreign.
- If a lymphocyte that has not completed its maturation interacts strongly with a self antigen, that lymphocyte receives signals that trigger apoptosis. Thus, the self-reactive cell dies before it can become functionally competent.
- The process of negative selection affects self-reactive CD4+ T cells and CD8+ T cells, which recognize self peptides displayed by class II MHC and class I MHC molecules, respectively.

#### **Central T cell tolerance**



Strong recognition of self antigens by immature T cells in the thymus may lead to death of the cells (negative selection, or deletion), or the development of regulatory T cells that enter peripheral tissues.

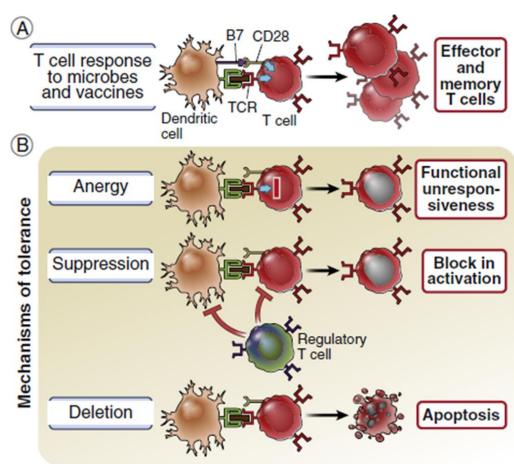



# **Central and Peripheral Tolerance to Self Antigens**

#### **\*** Central tolerance:

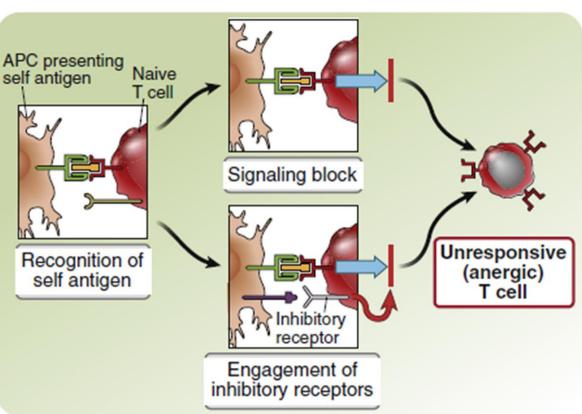
- Immature lymphocytes specific for self antigens may encounter these antigens in the generative (central) lymphoid organs and are deleted;
- B lymphocytes may change their specificity (receptor editing); and some T lymphocytes develop into regulatory T cells.
- Some self-reactive lymphocytes may complete their maturation and enter peripheral tissues.

#### **\*** Peripheral tolerance:


 Mature self-reactive lymphocytes may be inactivated or deleted by encounter with self antigens in peripheral tissues or suppressed by regulatory T cells.



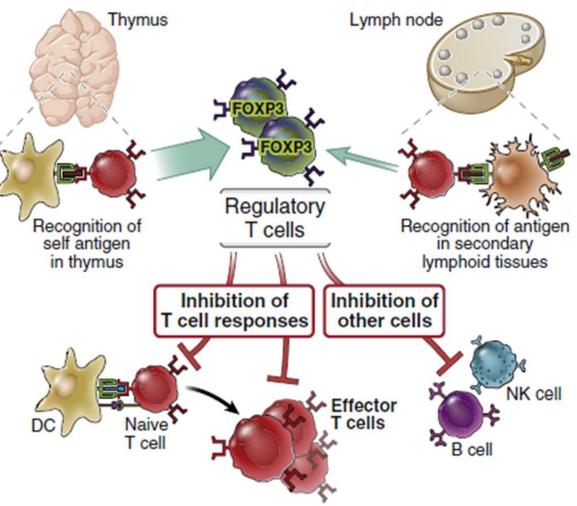



#### **Peripheral T Lymphocyte Tolerance**

- Peripheral tolerance is induced when mature T cells recognize self antigens in peripheral tissues, leading to functional inactivation (anergy) or death.
- Peripheral tolerance is clearly important for:
  - 1. Preventing **T cell responses** to **self antigens** that are not present in the thymus.
  - 2. Preventing **autoimmunity** in situations where **central tolerance to antigens** that are expressed in the thymus is **incomplete**.
- •Naive T lymphocytes need at least two signals to induce their proliferation and differentiation into effector and memory cells:
  - 1. Signal 1 is always antigen,
  - 2. Signal 2 is provided by costimulators that are expressed on APCs.






- Anergy
- Anergy in T cells refers to long-lived functional unresponsiveness that is induced when these cells recognize self antigens.
- Self antigens are normally displayed with low levels of costimulators.
- Antigen recognition without adequate costimulation is thought to be the basis of anergy induction.
- Anergic cells survive but are incapable of responding to the antigen.
- When T cells recognize antigens without costimulation, the TCR complex may lose its ability to transmit activating signals.

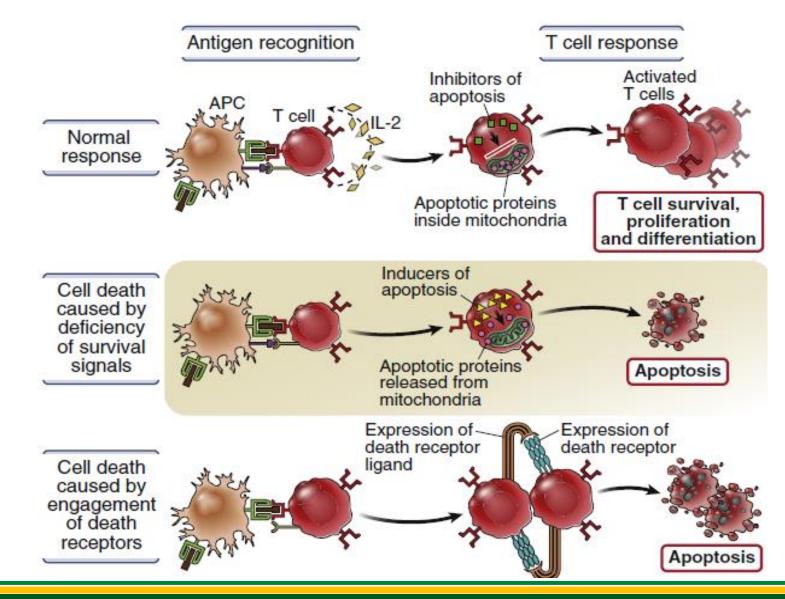




#### **Regulation of T Cell Responses by Inhibitory Receptors**

- Immune responses are influenced by a balance between engagement of activating and inhibitory receptors.
- This idea is established for B and T lymphocytes and natural killer (NK) cells.
- In T cells, the main activating receptors are the TCR complex and costimulatory receptors such as CD28 and the coinhibitors, are CTLA-4 and PD-1.




# **Deletion:** Apoptosis of Mature Lymphocytes



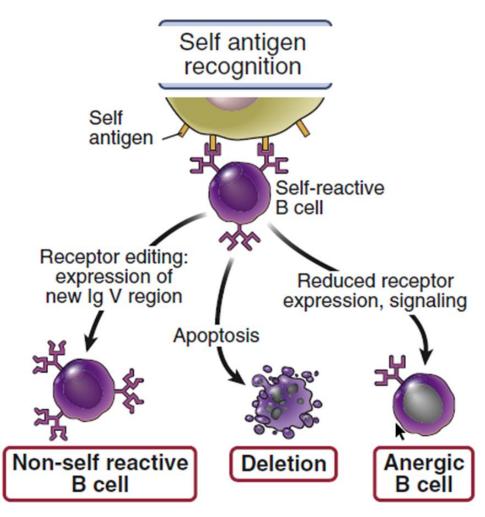
- Recognition of self antigens may trigger pathways of apoptosis that result in elimination (deletion) of the self-reactive lymphocytes.
- There are two likely mechanisms of death of mature T lymphocytes induced by self antigens:
- **1. Antigen recognition** induces in **T** cells the production of **proapoptotic proteins** that cause **mitochondrial proteins**, such as **cytochrome c**, to **leak out** and **activate cytosolic enzymes** called **caspases** that **induce apoptosis**.
  - In normal immune responses, the activity of these proapoptotic proteins is counteracted by antiapoptotic proteins that are induced by costimulation and by growth factors produced during the responses.
- **2. Recognition of self antigens** may lead to the coexpression of **death receptors** and **their ligands**.

### **Mechanisms of Apoptosis of T Lymphocytes**





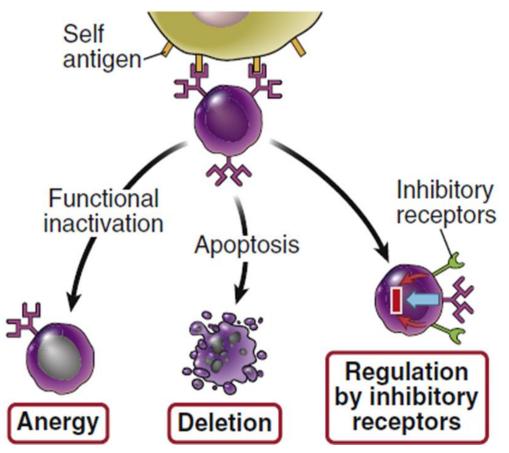
# **B** Lymphocyte Tolerance




- Self polysaccharides, lipids, and nucleic acids are T-independent antigens that are not recognized by T cells.
- These antigens must induce tolerance in B lymphocytes to prevent autoantibody production.
- Self proteins may not elicit autoantibody responses because of tolerance in helper T cells and in B cells.
- It is suspected that diseases associated with autoantibody production, such as systemic lupus erythematosus (SLE), are caused by defective tolerance in both B lymphocytes and helper T cells.

#### **Central B Cell Tolerance**




- When immature B lymphocytes interact strongly with self antigens in the bone marrow, the B cells either change their receptor specificity (receptor editing) or are killed (deletion).
- Receptor editing. Immature B cells are at a stage of maturation in the bone marrow when they have rearranged their immunoglobulin (Ig) genes, express IgM with a heavy chain and light chain.
- Deletion. If editing fails, immature B cells that strongly recognize self antigens receive death signals and die by apoptosis. This process of deletion is similar to negative selection of immature T lymphocytes.
- Anergy. Some self antigens, such as soluble proteins, may be recognized in the bone marrow with low avidity, B cells specific for these antigens survive, but antigen receptor expression is reduced, and the cells become functionally unresponsive (anergic).



# **Peripheral B Cell Tolerance**



- Mature B lymphocytes that encounter self antigens in peripheral lymphoid tissues become incapable of responding to that antigen.
- If B cells recognize a protein antigen but do not receive T cell help, the B cells become anergic because of a block in signaling from the antigen receptor.
- Anergic B cells may leave lymphoid follicles and are subsequently excluded from the follicles.
- These excluded B cells may die because they do not receive necessary survival stimuli.
- B cells that recognize self antigens in the periphery may also undergo apoptosis, or inhibitory receptors on the B cells may be engaged, thus preventing activation.



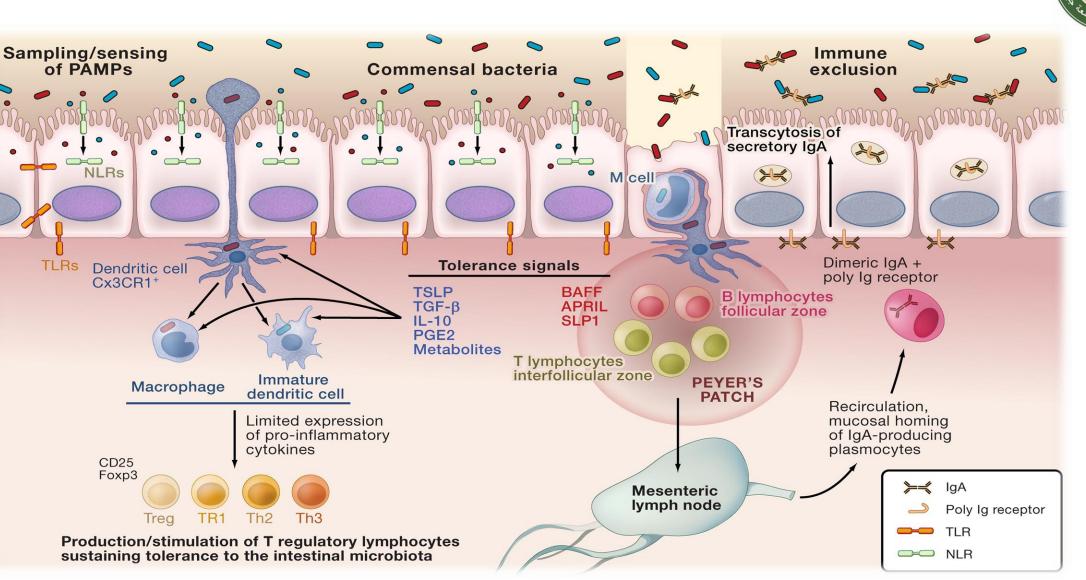
#### **Tolerance to Commensal Microbes**



- There are two other types of antigens that are not self but are produced by cells or tissues that have to be tolerated by the immune system.
- These are products of commensal microbes that live in symbiosis with humans and paternally derived antigens in the fetus.
- Coexistence with these antigens is dependent on many of the same mechanisms that are used to maintain peripheral tolerance to self antigens.
- Mature lymphocytes in these tissues are capable of recognizing the organisms but do not react against them, so the microbes are not eliminated, and harmful inflammation is not triggered.

#### **Tolerance to Commensal Microbes and Food Antigens- Cont..**



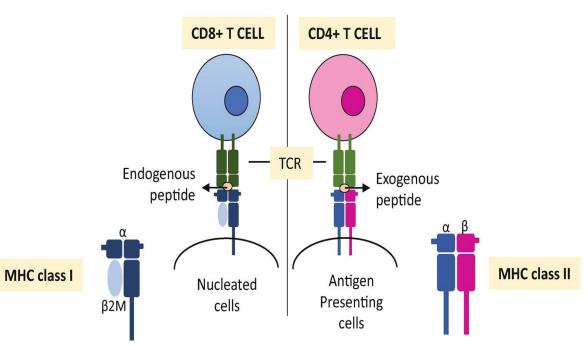

- The role of the GI mucosa in establishing oral tolerance is complex.
- The GI tract sees approximately 70–100 g of protein daily, and the immune regulation in response to this antigen load relies on a number of factors:
  - ✓ Physical barriers of the epithelium
  - ✓ Its secreted products, luminal digestion of antigens,
  - ✓ Suppressive immune milieu including the presence of regulatory T cells.
- The barrier function of the GI tract includes a hydrophobic layer of mucin oligosaccharides that trap antigen and secretory IgA that prevents absorption of food proteins across the intestinal epithelium.
- As food proteins pass through the stomach and duodenum, gastric acid and other digestive enzymes destroy their conformational and linear epitopes and break them down into di- and tripeptides, rendering them less immunogenic while simultaneously permitting absorption of peptides and amino acids as nutrients.

#### **Tolerance to Commensal Microbes and Food Antigens- Cont..**



- Three different types of cells in the intestinal mucosa can sample proteins that escape digestion.
- Specialized epithelial cells called microfold (M) cells are found in the dome epithelium overlying Peyer's patches.
- They can take up particulate antigen due to their limited glycocalyx, their sparse cytoplasm, and their high endocytic activity, allowing for efficient delivery to the underlying immune cells.
- Intestinal epithelial cells (IECs) can also transport soluble antigens by a transcellular mechanism,
- **Dendritic cells (DCs)** can directly sample antigen by **extending dendrites into the intestinal lumen**.
- Once antigen has been check out, it generates the production of regulatory T cells that suppress
  effector T-cell responses in an antigen-specific manner.
- Feeding of antigen induces regulatory CD4+ and CD8+ T cells that can transfer tolerance to a naïve animal.

# **Tolerance Mechanism of Commensal Bacterial**




RSITY /

#### Major Histocompatibility Complex (MHC)

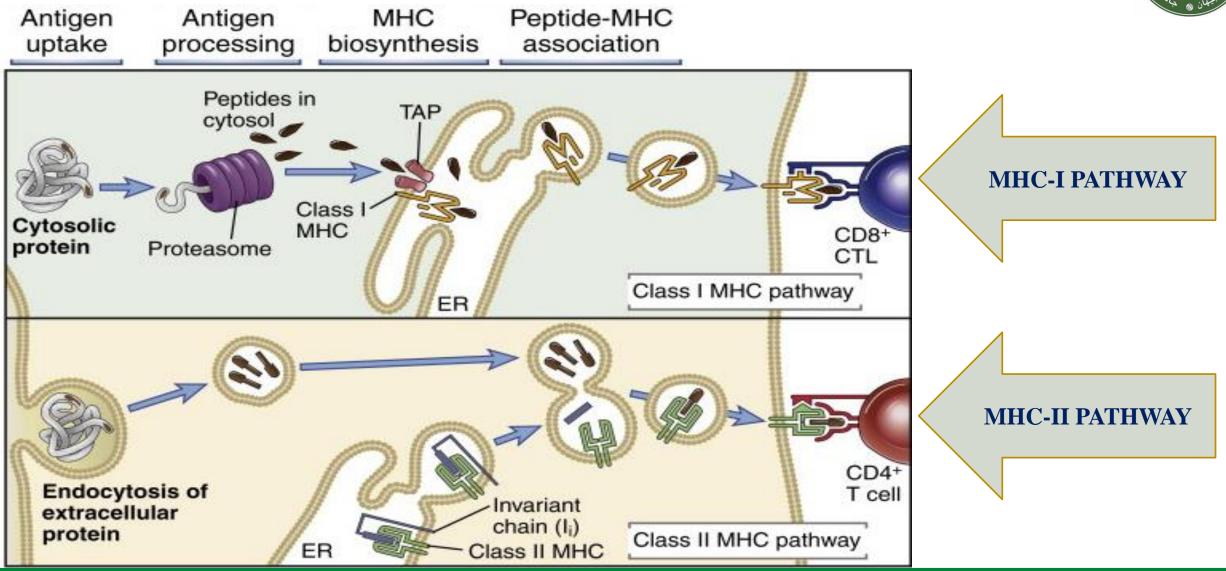


- They are group of genes that code for proteins found on the surfaces of cells that help the immune system recognize foreign substances.
- MHC proteins are found in all higher vertebrates.
- In human beings the complex is also called the human leukocyte antigen (HLA) system.








- **1. Class I MHC Genes**
- •MHC Class 1 mediates immune responses against <u>endogenous antigens</u>, antigens that are already found in the cell.
- Usually, these **cells that are expressing MHC class 1** are **viral-infected** or are **tumor cells**.
- MHC Class 1 presents peptides that are 8–10 amino acids in size, which will then be recognized by the cytotoxic (CD8) T cells.
- MHC Class 1 is found on <u>all nucleated cells</u>.

#### 2. Class II MHC Genes



- •MHC class 2 mediates immune responses against <u>exogenous antigens</u>, antigens that are found **outside of the cell**, <u>in the cytosol</u>.
- •MHC class 2 will bind with amino acid residues that are 13–18 in size and will be recognized by (CD4)T helper cells.
- The MHC class 2 protein is found on cells like the <u>B lymphocytes, macrophages, monocytes,</u> <u>dendritic cells</u>.
- These cells are phagocytic and can engulf an extracellular antigen.

#### **Antigen Processing**





# **T cell receptor (TCR)**



- TCR receptor (antigen recognition) is associated with complex of CD3 proteins important for signal transmission
- In the process of antigen recognition TCR cooperate with CD4 and CD8 coreceptors
- TCR recognize only MHC proteins with antigen peptides fragments.
- For full activation T cell must recognize the antigen on the cell surface of APC.

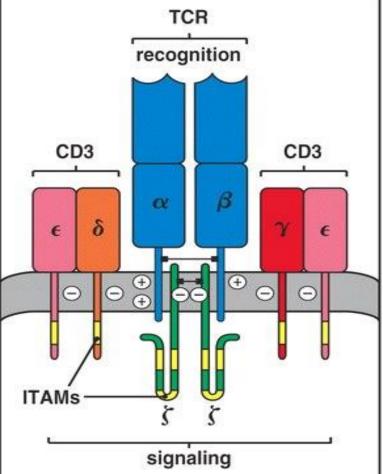
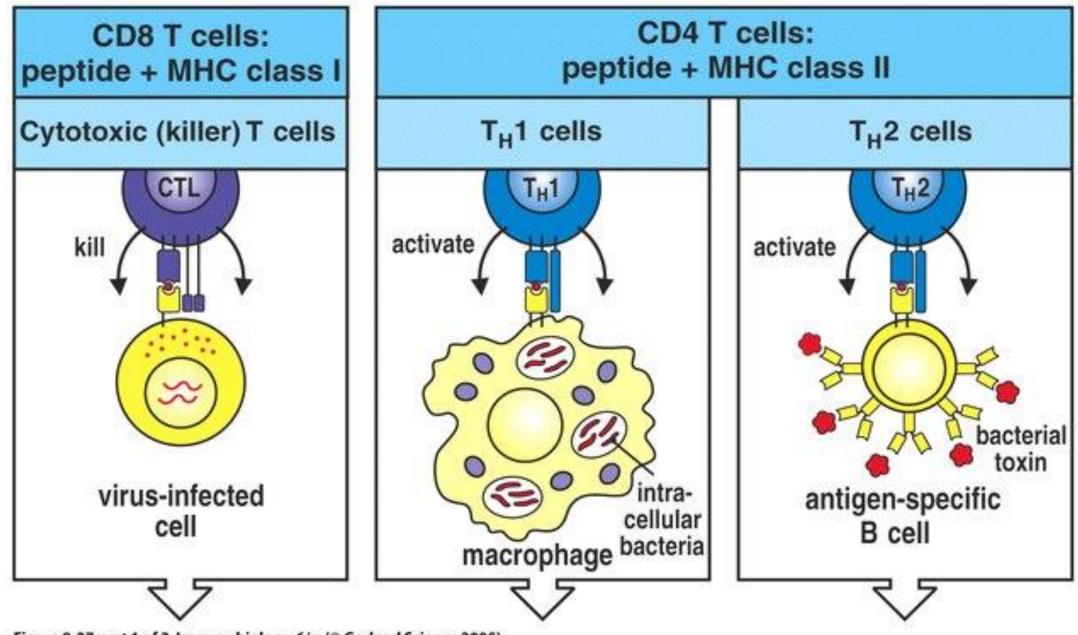




Figure 6-9 Immunobiology, 6/e. (© Garland Science 2005)



#### Helper T cells are MHC II restricted

# Cytotoxic T cells are MHC I restricted

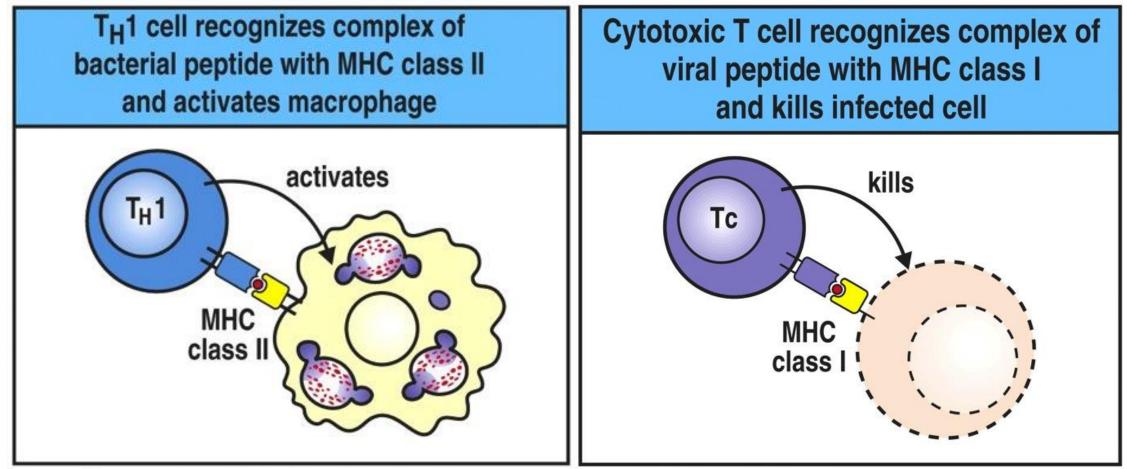
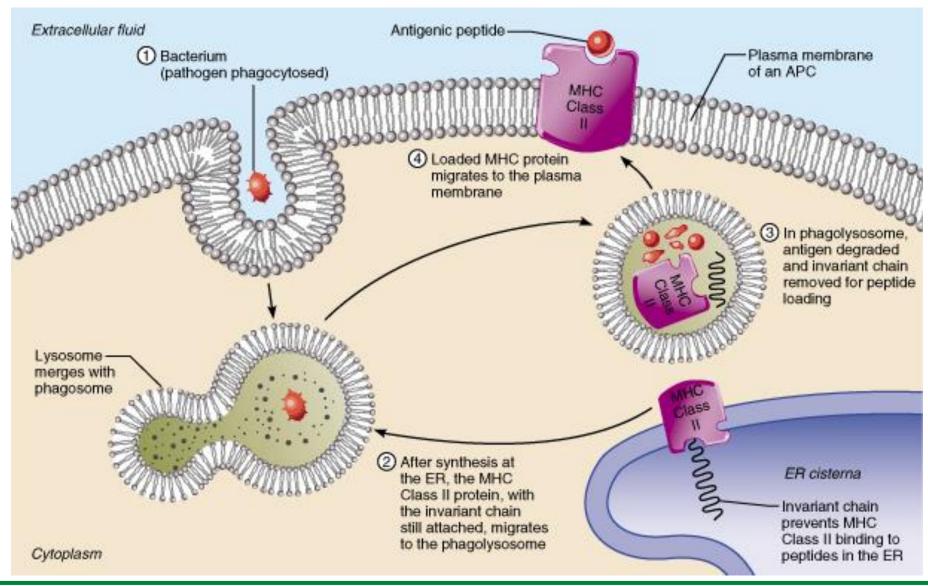



Figure 1-31 Immunobiology, 6/e. (© Garland Science 2005)

Figure 1-30 Immunobiology, 6/e. (© Garland Science 2005)


### **Processing and Presentation of Protein Antigens**

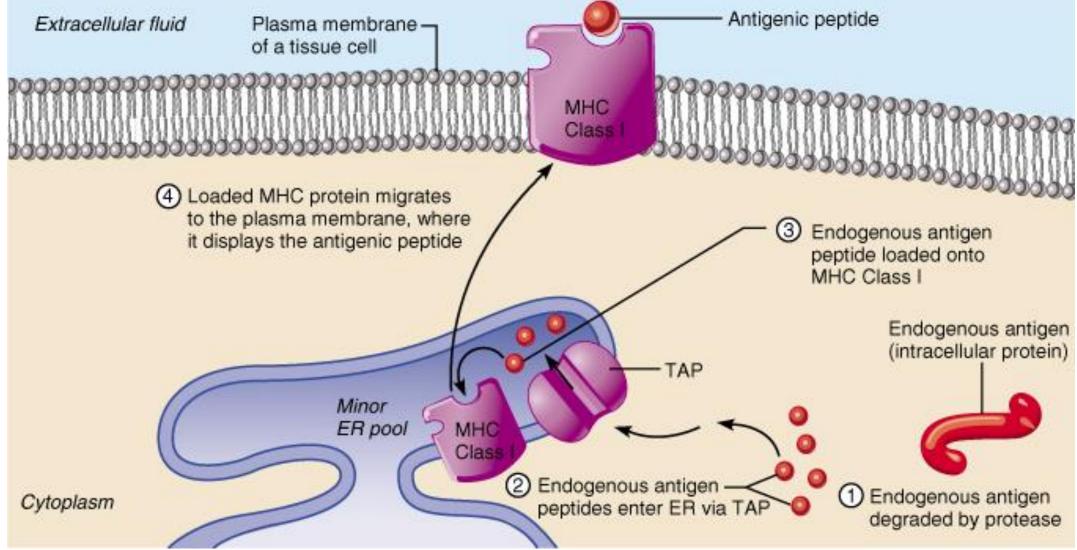


- **\***There are 2 different antigen-presenting pathway to mediate responses:
  - A. Exogenous (Extracellular- Endocytic) antigens (Endocytic Pathway)
  - 1. The pathway begins by **phagocytosis of a foreign agent**, an organism, bacteria, helminthic, and etc. The **antigen is now in a phagosome**.
  - 2. A lysosome will fuse with the phagosome to become a phagolysosome. The antigen will be degraded into smaller peptides.
  - 3. The MHC class-II will migrate to the phagolysosome, where it will bind to components that are 13–18 amino acids in size. Once bound, the MHC class-II will migrate to the membrane to display the antigen.
  - 4. A helper T cell will recognize the complex and trigger the appropriate response, such as secreting cytokines and chemokines to control whatever kind of infection is taking place.

# Endocytic (Exogenous) Pathway






#### **B.** Endogenous (intracellular-Cytosolic ) antigens



- **1. Intracellular auto-antigens**, antigens of **viruses** or other intracellular parasites or **tumorous antigens**.
- It starts with an antigen that's already in the cell. It will be broken down into smaller peptides by a protease.
- 3. The **peptides** will be **transported into the endoplasmic reticulum** where **MHC-I** is located.
- 4. The 8–10 amino acid residues will bind with MHC-I and once that happens, the MHC-I and antigen will migrate to the cell surface, where it will present the antigen.
- **5.** Cytotoxic T cells will recognize this complex and initiate the appropriate immune response to kill this cell.

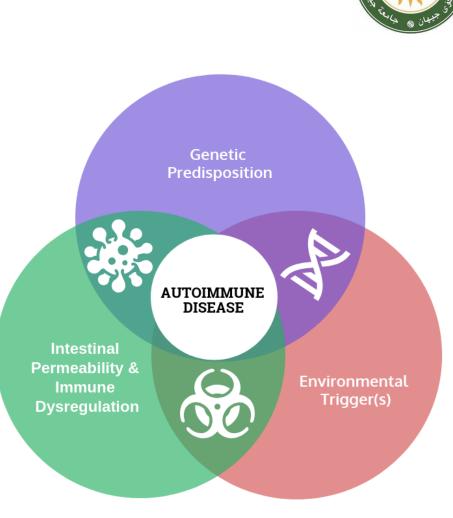
#### **Cytosolic (Endogenous) Pathway**





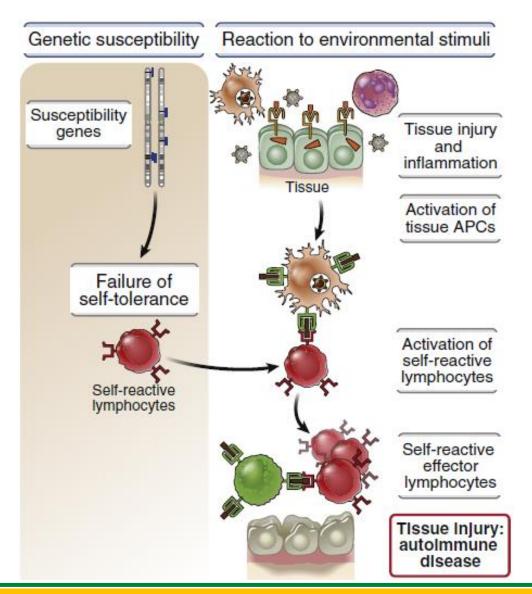
# Autoimmunity




- •Autoimmunity is defined as an immune response against self (autologous) antigens.
- •It is estimated to affect 5% to 10% of the population in developed countries
- •There are different autoimmune diseases may be:
  - 1. Organ-specific, affecting only one or a few organs,
  - 2. Systemic, with widespread tissue injury and clinical manifestations.
- Tissue injury in autoimmune diseases may be caused by antibodies against self antigens or by T cells reactive with self antigens.

#### **Causes of Autoimmune Diseases**

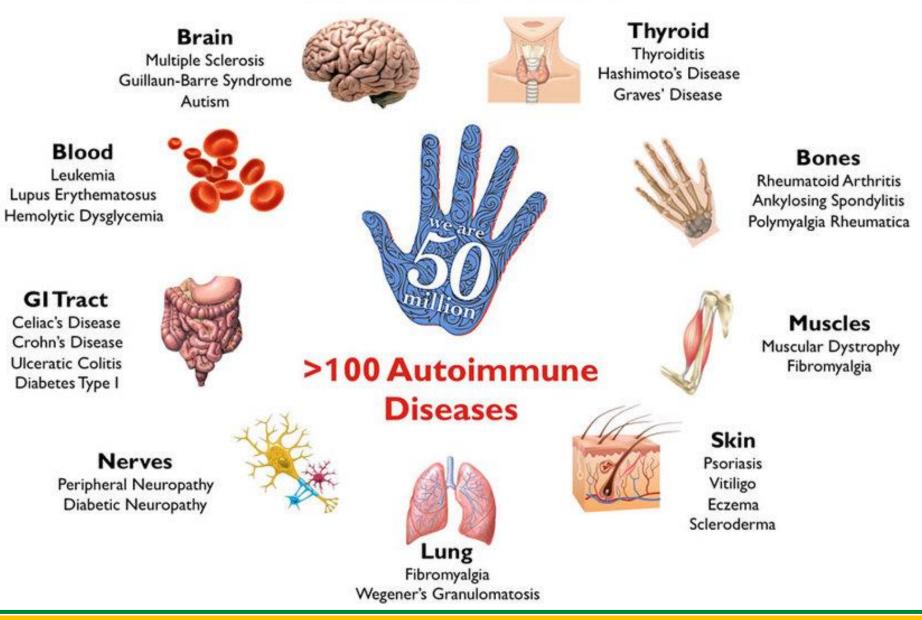
**Pathogenesis:** the inheritance of **susceptibility genes** and environmental triggers, such as infections. It is postulated that susceptibility genes interfere with pathways of self-tolerance and lead to the persistence of self-reactive T and B lymphocytes. **Environmental stimuli** may cause **cell and tissue injury** and **inflammation.** Activating these **self-reactive lymphocytes**, resulting in the generation of effector T cells and autoantibodies that are **responsible** for the **autoimmune disease**.


#### **Genetic Factors:**

Inherited risk for most autoimmune diseases is attributable to multiple gene loci, of which the largest contribution is made by **MHC genes**.



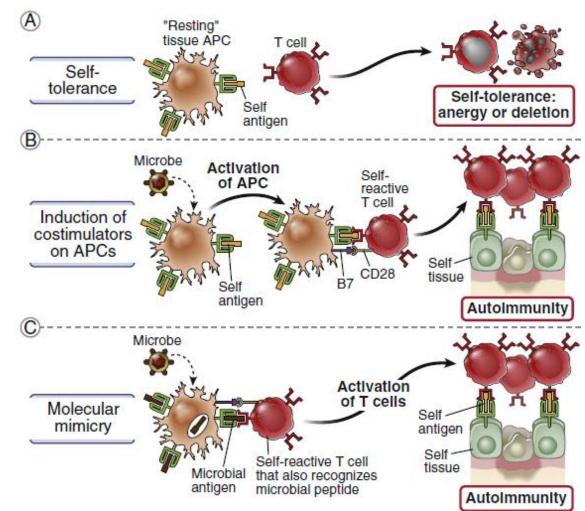
#### **Postulated Mechanisms of Autoimmunity**






#### **Common Autoimmune Diseases**

| Disease                         | <b>Disease Mechanism</b>                                                                                                  | Consequence                                                                                                                                                            |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type 1 diabetes                 | the immune system attacks and destroys insulin-<br>producing cells in the pancreas.                                       | Destruction of pancreatic islet B cells leading to non-<br>production of insulin.                                                                                      |
| Rheumatoid arthritis<br>(RA)    | the immune system (autoreactive T cells) attacks the joints synovium.                                                     | Joint inflammation and destruction causing arthritis.                                                                                                                  |
| Graves' disease                 | Autoantibodies against the thyroid- stimulating-<br>hormone receptor.                                                     | Hyperthyroidism, overproduction of thyroid hormones.                                                                                                                   |
| Hashimoto's thyroiditis         | Autoantibodies and autoreactive T cells against thyroid antigens.                                                         | Destruction of thyroid tissue leading to hypothyroidism, underproduction of thyroid hormones.                                                                          |
| Multiple sclerosis              | Autoreactive T cells against brain antigens.                                                                              | Formation of sclerotic plaques in brain with destruction<br>of myelin sheaths surrounding nerve cell axons, leading<br>to muscle weakness, ataxia, and other symptoms. |
| Systemic lupus<br>erythematosus | Autoantibodies and autoreactive T cells against<br>DNA, chromatin proteins, and ubiquitous<br>ribonucleoprotein antigens. | Glomerulonephritis, vasculitis, rash.                                                                                                                                  |
| Sjögren's syndrome              | Autoantibodies and autoreactive T cells against ribonucleoprotein antigens.                                               | Lymphocyte infiltration of exocrine glands, leading to dry eyes and/ or dry mouth; other organs may be involved, leading to systemic disease.                          |


#### Autoimmune Diseases





#### **Mechanisms by Which Microbes may Promote Autoimmunity**

- A. Normally, an encounter of mature T cells with self antigens presented by resting tissue antigenpresenting cells (APCs) results in peripheral tolerance.
- B. Microbes may activate the APCs to express costimulators, and when these APCs present self antigens, the specific T cells are activated, rather than being rendered tolerant.
- C. Some microbial antigens may cross-react with self antigens (mimicry).
- Therefore, immune responses initiated by the microbes may become directed at self cells and self tissues.





#### References



- 1. Abbas, A. K., Lichtman, A. H., Pillai, S., & Baker, D. L. (. i. (2020). Basic immunology: Functions and disorders of the immune system (Sixth edition.).
- 2. Turgeon, M. L. (1996). Immunology & serology in laboratory medicine. St. Louis: Mosby.
- 3. Abul K. Abbas and Andrew H. Lichtman. Cellular And Molecular Immunology 2019, 6<sup>th</sup> edition .
- 4. Steele, L., Mayer, L., & Cecilia Berin, M. (2012). Mucosal immunology of tolerance and allergy in the gastrointestinal tract. Immunologic research, 54, 75-82.
- 5. Ahn, S. J., Le Master, E., Granados, S. T., & Levitan, I. (2023). Impairment of endothelial glycocalyx in atherosclerosis and obesity. Current Topics in Membranes, 91, 1-19.
- 6. <u>https://www.youtube.com/watch?v=VPvCekgPwRI&t=28s</u>
- 7. <u>https://www.youtube.com/watch?v=vDwNpDT-8L0&t=21s</u>
- 8. <u>https://www.youtube.com/watch?v=dBeGmbumpHQ</u>
- 9. <u>https://www.youtube.com/watch?v=ZLh2rfZuvdE</u>