Cihan University - Sulaimaniya Architectural Engineering Department Assistant Lecturer Mr. Diyari Burhan MSc in Structural Engineering

Engineering Surveying Theory 5:Area

Introduction

One of the primary objects of most land surveys is to determine the area of the tract and volume of earth works. Areas are considered first of all, since the computation of areas is involved in the calculation of volumes.

Conversions (Review):
$1 \mathrm{~km}^{2}=10^{6} \mathrm{~m}^{2}$
1 hectare $=10^{4} \mathrm{~m}^{2}$
$1 \mathrm{~km}^{2}=100$ hectare
1 acre $=4046.8452 \mathrm{~m}^{2}$
1 acre $=42560 \mathrm{ft}^{2}$
1 Donum $=2500 \mathrm{~m}^{2}$

Methods of Area Determination

A. Field Measurement:

1. Dividing the Area into Triangles:

In this method, the area is divided into smaller triangles then the area of each segment is determined then the total area will be the summation of all.

The area of the triangle can be determined as the following:

$$
A_{1}=\sqrt{S(S-a)(S-b)(S-c)}
$$

while $S=\frac{1}{2}(a+b+c)$

$$
A_{2}=\frac{1}{2} \cdot d \cdot e \cdot \sin \theta
$$

Methods of Area Determination

2. Trapezoidal rule:

Let the figure below represent a position of a tract laying between a traverse line AB and irregular boundary CD, offsets $\boldsymbol{h}_{\mathbf{1}}, \boldsymbol{h}_{\mathbf{2}}, \boldsymbol{h}_{\mathbf{3}}, \ldots \ldots \ldots ., \boldsymbol{h}_{\boldsymbol{n}}$ having been taken at the regular intervals d . The summation of the areas of the trapezoids comprising the total area is:

$$
\begin{aligned}
& A=d\left[\left(\frac{h_{1}+h_{n}}{2}\right)+\left(h_{2}+h_{3}+\cdots h_{n-1}\right)\right] \\
& A=d[(\text { average of end offsets })+(\text { sum of intermediate offsets })]
\end{aligned}
$$

Trapezoidal Rule : Add the average of the end offsets to the sum of the intermediate offsets. The product of the quantity thus determined the common interval between offsets is the reauired area.

Engineering Surveying

Example: Calculate the area of the plot shown in the figure below, if $\mathrm{d}=25 \mathrm{ft}$.

Solution:

$$
\begin{aligned}
& A=d\left[\left(\frac{h_{1}+h_{n}}{2}\right)+\left(h_{2}+h_{3}+\cdots h_{n-1}\right)\right] \\
& A=d[(\text { average of end offsets })+(\text { sum of intermediate offsets })]
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\mathrm{d}\left[\frac{\left(\mathrm{~h}_{1}+\mathrm{h}_{10}\right)}{2}+\mathrm{h}_{2}+\mathrm{h}_{3}+\mathrm{h}_{4}+\mathrm{h}_{5}+\mathrm{h}_{6}+\mathrm{h}_{7}+\mathrm{h}_{8}+\mathrm{h}_{9}\right] \\
& =25[(55+50) / 2+60+53+48+54+68+65+57+55] \\
& =25[(52.5)+(460)] \quad=25(512.5) \quad=\quad \mathbf{1 2 8 1 2 . 5} \mathbf{f t}^{2} \\
& =12812.5 / 9=\mathbf{1 4 2 3 . 6 1 1} \mathbf{y d}^{2}=1423.611 / 4840 \text { acres }=\mathbf{0 . 2 9 4} \text { acres }
\end{aligned}
$$

Methods of Area Determination

3. Average Height:

$$
A=\left(\frac{\sigma h}{n}\right) *(n-1) d
$$

Example: for the figure below, determine the area.

$$
A=\left(\frac{h_{1}+h_{2}+h_{3}+h_{4}+h_{5}+h_{6}+h_{7}}{7}\right) * 6(d)
$$

Engineering Surveying Mr. Diyari Burhan

Methods of Area Determination

4. Simpson`s rule (Simpson`s one-third rule):

$$
\begin{aligned}
& A_{1,2}=\text { ABCFDA } \\
& A_{1,2}=\text { Trapezoid ABCHDA }+ \text { Area CHDFC } \\
& A_{1,2}=\left[\frac{\left(h_{1}+h_{3}\right)}{2} \cdot 2 d\right]+\left[\frac{2}{3}\left(h_{2}-\frac{\left(h_{1}+h_{3}\right)}{2}\right) \cdot 2 d\right] \\
& A_{1,2}=\frac{d}{3}\left(h_{1}+4 h_{2}+h_{3}\right)
\end{aligned}
$$

Similarly for the next intervals:

$$
A_{3,4}=\frac{d}{3}\left(h_{3}+4 h_{4}+h_{5}\right)
$$

The summation of these partial areas for ($n-1$) intervals, n being an odd number and representing the number of offsets, is;

$$
\text { Area }=\frac{d}{3}\left[\left\{h_{1}+h_{n}\right\}+2\left\{h_{3}+h_{5}+h_{7}+\ldots . .+h_{n-2}\right\}+4\left\{h_{2}+h_{4}+h_{6}+\ldots .+h_{n-1}\right\}\right]
$$

$=d / 3[($ sum of first and last offsets $)+2($ sum of remaining odd offsets $)$

$$
+4(\text { sum of the even of fsets })]
$$

$$
A_{\text {total }}=\frac{d}{3}\left[h_{1}+h_{n}+4 * h_{\text {even }}+2 * h_{\text {odd }}\right]
$$

Example

Example : In a survey the following offsets were taken to a fence from a traverse line.

Chainage (ft)	0	20	40	60	80	100	120	140	160	180	200
Offset (ft)	55	60	58	62	70	65	63	58	54	57	56

Find the area between the fence and the traverse line in acres by the Simpson's One-third Rule.

Solution :

$$
\mathrm{d}=(200-180)=(180-160)=\ldots \ldots \ldots \ldots=(40-20)=(20-0)=20 \mathrm{ft}
$$

$$
\mathrm{h}_{1}=55, \mathrm{~h}_{2}=60, \mathrm{~h}_{3}=58, \mathrm{~h}_{4}=62, \mathrm{~h}_{5}=70, \mathrm{~h}_{6}=65, \mathrm{~h}_{7}=63, \mathrm{~h}_{8}=58, \mathrm{~h}_{9}=54, \mathrm{~h}_{10}=57, \mathrm{~h}_{11}=56
$$

$$
\text { Area }=\mathrm{d} / 3[\text { (sum of first and last offsets) }+2 \text { (sum of remaining odd offsets) }+4 \text { (sum of even offsets) }]
$$

$$
\left.=d / 3\left[\left\{h_{1}+h_{n}\right\}+2\left\{h_{3}+h_{5}+h_{7}+\ldots+h_{(n-2)}\right\}+4\left\{h_{2}+h_{4}+h_{6}+\ldots+h_{(n-1)}\right)\right\}\right]
$$

$$
=d / 3\left[\left\{h_{1}+h_{n}\right\}+2\left\{h_{3}+h_{5}+h_{7}+h_{9}\right\}+4\left\{h_{2}+h_{4}+h_{6}+h_{8}+h_{10}\right\}\right]
$$

$$
=20 / 3[\{55+56\}+2\{58+70+63+54\}+4\{60+62+65+58+57\}]
$$

$$
=20 / 3[\{111\}+2\{245\}+4\{302\}]=20 / 3[\{111\}+\{490\}+\{1208\}]
$$

$$
=20 / 3[1809]=12060 \mathrm{ft}^{2}=12060 / 9 \mathrm{yd}^{2}=1340 \mathrm{yd}^{2}
$$

$$
=1340 / 4840 \text { acres }=0.2768 \text { acres }
$$

Methods of Area Determination

5. Using Coordinate of land corners: In this method, the coordinates (x, y) of all the points should be known, then by using the formula below, the area can be determined.
$\mathrm{A}=\frac{1}{2}\left[\left(X_{A} \cdot Y_{B}+X_{B} \cdot Y_{C}+X_{C} \cdot Y_{D}+X_{D} \cdot Y_{E}+X_{E} \cdot Y_{F}+X_{F} \cdot Y_{G}+X_{G} \cdot Y_{A}\right)-\left(Y_{A} \cdot X_{B}+Y_{B} \cdot X_{C}+\right.\right.$

Methods of Area Determination

Example: Find the area of the following closed loop traverse (ABCDEA):

Station	$\mathrm{y}(\mathrm{ft})$	$\mathrm{x}(\mathrm{ft})$
A	-57.41	-231.66
B	-311.26	-79.49
C	-31.66	123.48
D	62.35	309.11
E	172.76	-19.44

Solution:	Point	y	x	Positive product (Solid product)	$\begin{gathered} \text { Negative } \\ \text { product } \\ \text { (Dushed product) } \end{gathered}$
	1	-57.41	-231.66		
	2	311.2	-79.49	72,106.49	4,563.52
	3	-31.6	123.48	2,516.65	-38,434.38
	4	62.3	309.11	7,698.98	-9,786.42
	5	172.7	-19.44	53,401.84	-1,212.08
	1	-57.4	-231.66	1,116.05	-40,021.58
	Area		[-8890.944)11	136,840.01	-84,890.94

Engineering Surveying

Methods of Area Determination

B. Map Measurement:

1. Dividing the Area into Triangles:

In this method, the area is divided into smaller triangles then the area of each segment is determined then the total area will be the summation of all.
the area of the triangle can be determined as the following:

$$
A_{1}=\sqrt{S(S-a)(S-b)(S-c)}
$$

while: $S=\frac{1}{2}(a+b+c)$
$A_{2}=\frac{1}{2} \cdot d . e \cdot \sin \theta$

Engineering Surveying

Example

Example:

Engineering Surveying
Mr. Diyari Burhan
HW: Find
area for this
map which
has all
required
dimensions?

Methods of Area Determination

2. Using Graphical Paper:
$\mathbf{A}=\mathbf{n} \cdot \mathbf{A}_{\mathbf{i}}$

Where:
$A=$ Total Area
$\mathrm{n}=$ Number of squares
$A_{i}=$ Area of one square

Engineering Surveying Mr. Diyari Burhan

Methods of Area Determination

3. Planimeter:

A planimeter (also known as a platometer) is a measuring instrument used to determine the area of an arbitrary twodimensional shape.

- https://www.youtube.com/watch?v=pvGuGalmTek

Engineering Surveying Mr. Diyari Burhan

Methods of Area Determination

4. Using Coordinate of land corners: In this method, the coordinates (x, y) of all the points should be known, then by using the formula below, the area can be determined.
$\mathrm{A}=\frac{1}{2}\left[\left(X_{A} \cdot Y_{B}+X_{B} \cdot Y_{C}+X_{C} \cdot Y_{D}+X_{D} \cdot Y_{E}+X_{E} \cdot Y_{F}+X_{F} \cdot Y_{G}+X_{G} \cdot Y_{A}\right)-\left(Y_{A} \cdot X_{B}+\right.\right.$

Engineering Surveying

Example

Example: Calculate the shaded area shown in the figure below.
Given: A (503.42, 1710.48), F (580.62, 1750.60), ED=EF

Solution:

$$
\text { Area }_{(\text {half circle })}=\frac{D^{2} \pi}{8}=\frac{100^{2} \pi}{8}=3927
$$

$$
\text { Area }_{(E F D)}
$$

$$
S=\frac{1}{2}(100+100+105.16)=152.58
$$

$\operatorname{Area}_{(E F D)}=\sqrt{152.58 *(152.58-100) *(152.58-100) *(152.58-105.16)}=4472.5$

Area $_{(C D F)}=\frac{1}{2} * 105.16 * 88.82 * \sin 26=2047.26$

- Length $_{(A F)}=\sqrt{40.12^{2}+77.2^{2}}=87$

Area $_{(A F C)}=\frac{1}{2} * 87 * 102 * \sin 27.46=2046$
Total area $=12492.5$
Engineering Surveying

