University of Cihan-Sulaimaniya
Engineering Faculty
Architectural Engineering Department

ENGINEERING MECHANICS

Chapter 5: Equilibrium of Rigid Body

2nd Grade- Fall Semester 2023-2024
Instructor: Diyari B. Hussein

Chapter Description

- Aims
- To transform the rigid body into free-body diagram
- To apply the equation of equilibrium in the rigid body
- Expected Outcomes
- Able to determine the forces involved in the rigid body using equation of equilibrium
- References
- Russel C. Hibbeler and Kai Beng Yap (2013) Engineering Mechanics: Statics \& Dynamics, $13^{\text {th }}$ Edition

Chapter Outline

1. Introduction of Equilibrium
2. Free-Body Diagrams
3. Equations of Equilibrium
4. Example Calculation

1.1 Introduction of Equilibrium

What is equilibrium?

A body is in the static motion, not move, not rotate, or moving with constant velocity

A body exposed to the 3 forces there are:

1) External Force
2) Couple moment system
3) Internal Force \qquad Affected by gravitational, electrical, magnetic, or contact force caused by adjacent bodies bodies

Equilibrium equation of a body at point 0 :

$$
\begin{aligned}
& F_{R}=\sum F=0 \text { (zero) } \\
&\left(M_{R}\right)_{o}=\sum M_{F_{k} o_{0}}=0 \quad \text { (zero) }
\end{aligned}
$$

Equilibrium equation of a body at point A :

$$
\sum M_{A}=r \times F_{R}+\left(M_{R}\right)_{o}=0
$$

5.2 Free-Body Diagrams (FBDs)

What is FBDs?

1. Sketch all the forces and couple moments surroundings apply on a body.
2. Primary importance to solve the problems in mechanics

5.2 Free-Body Diagrams

Support Reactions:

1) Force caused by the supports and points which contacted to body subjected to coplanar force systems
2) If a support prevents the translation of a body in a given direction, means that a force is developed on the body in that direction
3) If rotation is prevented, a couple moment exerted on the body

Procedure of FBDs:

1) Draw the outline of body shape
2) Indicate all dimensions of the body
3) Allocate all forces and couple moments act on the body
4) Label their magnitudes and directions

Example Problem:

Draw the FBDs for the Figure below:

Figure 1: Fixed beam
Source: http://www.chegg.com

Example Solution:

Figure 1: Fixed beam
Source: http://www.chegg.com

5.3 Equations of Equilibrium

- For equilibrium of a rigid body in 2D,

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \\
& \sum \mathrm{~F}_{\mathrm{y}}=0 \\
& \sum \mathrm{M}_{\mathrm{O}}=0
\end{aligned}
$$

- $\quad \sum F_{x}$ is sum of all forces in x-axis
- $\quad \sum F_{y}$ is sum of all forces in y-axis
- $\quad \sum \mathrm{M}_{\mathrm{O}}$ is sum of the couple moments and moments of forces due to point origin (o)

Procedure of Equilibrium Equation:

1) Afterdraw FBDs, apply equation of equilibriums

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \\
& \sum \mathrm{~F}_{\mathrm{y}}=0 \\
& \sum \mathrm{M}_{\mathrm{O}}=0
\end{aligned}
$$

2) For the moment at point O , all the forces must be considered and sign of the moment based on the rotation
3) Use 3 equilibrium equations in detemining third unknown
4) Negative result shows the direction of the detemined force in opposite

Example Problem 1:

Determine the horizontal and vertical components of reaction on the beam as shown in Figure 2 below:

Figure 2: Beam with load

Solution:

1) FBDs

2) Find the force at support system using equilibrium equation

Answer: $\mathrm{Ax}=0 \mathrm{kN}, \mathrm{Ay}=250 \mathrm{kN}, \mathrm{MA}=1662.5 \mathrm{kN}$

Conclusion of The Chapter 5

- Conclusions
- The FBDs diagram have been introduced and applied to solve the equilibrium problems for the rigid body

