University of Cihan-Sulaimaniya
 Engineering Faculty
 Architectural Engineering Department

 ENGINEERING MECHANICS
Chapter 4: Force System Resultants

2nd Grade- Fall Semester 2023-2024
Instructor: Diyari B. Hussein

Chapter Description

- Aims
- To explain the Moment of Force (2D-scalar formulation \& 3D-Vector formulation)
- To explain the Principle Moment
- To explain the Moment of a Couple
- To explain the Simplification of a Force and Couple System
- To explain the Reduction of Simple Distributed Loading
- Expected Outcomes
- Able to solve the problems of MOF and COM in the mechanics applications by using principle of moments
- References
- Russel C. Hibbeler. Engineering Mechanics: Statics \& Dynamics, $14^{\text {th }}$ Edition

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Chapter Outline

1. Moment of Force (MOF) -Part I
2. Principle of Moment -Part II
3. Moment of Couple (MOC) Part III
4. Simplification of a Force and Couple System
5. Reduction of Simple Distributed Loading- part IV

Magnitude of resultant force

Consider an element of length dx.
The force magnitude dF acting on it is given as

$$
\mathrm{dF}=\mathrm{w}(\mathrm{x}) \mathrm{dx}
$$

The net force on the beam is given by

$$
+\downarrow F_{R}=\int_{L} d F=\int_{L} w(x) d x=A
$$

Here A is the area under the loading curve $w(x)$.

Location of the resultant force

The force dF will produce a moment of $(\mathrm{x})(\mathrm{dF})$ about point O .

Assuming that F_{R} acts at x , it will produce the moment about point O as

$$
l_{+} \mathrm{M}_{\mathrm{RO}}=\left({ }^{x}\right)\left(\mathrm{F}_{\mathrm{R}}\right)=\int_{\mathrm{L}} \mathrm{w}(\mathrm{x}) \mathrm{dx}
$$

Location of the resultant force

Comparing the last two equations, we get

$$
\bar{x}=\frac{\int_{L} x w(x) d x}{\int_{L} w(x) d x}=\frac{\int_{A} x d A}{\int_{A} d A}
$$

You will learn more detail later, but F_{R} acts through a point " C ," which is called the geometric center or centroid of the area under the loading curve $\mathrm{w}(\mathrm{x})$.

Example 4.11

Determine the concentrated loads (which is a common name for the resultant of the distributed load)

The rectangular load: find the area of rectangular
$\mathrm{F}_{\mathrm{R}}=400 \times 10=4,000 \mathrm{lb}$
$\bar{x} \quad \frac{10}{2}=5 \mathrm{ft} \quad$ location is the centroid of rectangular

Example 4.12

Determine the concentrated loads (which is a common name for the resultant of the distributed load)

The triangular loading: find the area of triangular $\mathrm{F}_{\mathrm{R}}=\frac{1}{2}(600)(6)=1,800 \mathrm{~N}$ and $\bar{x}=6-(1 / 3) 6=4 \mathrm{~m}$

Please note that the centroid of a right triangle is at a distance one third the width of the triangle as measured from its base

Example 4.13

The loading on the beam as shown. Determine equivalent force and its location from point A .

1) The distributed loading can be divided into two parts. (one rectangular loading and one triangular loading).
2) Find F_{R} and its location for each of the distributed loads.
3) Determine the overall F_{R} of the point loadings and its location.

Solution Example 4.13

For the triangular loading of height $150 \mathrm{lb} / \mathrm{ft}$ and width 6 ft ,
$\mathrm{F}_{\mathrm{R} 1}=(0.5)(150)(6)=450 \mathrm{lb}$
and its line of action is at $\overline{\mathrm{x}}_{1}=(2 / 3)(6)=4 \mathrm{ft}$ from A

For the rectangular loading of height $150 \mathrm{lb} / \mathrm{ft}$ and width 8 ft ,
$\mathrm{F}_{\mathrm{R} 2}=(150)(8)=1200 \mathrm{lb}$
and its line of action is at ${ }^{-}=6+(1 / 2)(8)=10 \mathrm{ft}$ from A

The equivalent force and couple moment at A will be

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{R}}=450+1200=1650 \mathrm{lb} \\
& +\quad \mathrm{M}_{\mathrm{RA}}=4(450)+10(1200)=13800 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

Since $\left(\bar{x} * F_{R}\right)$ has to equal $M_{R A}: 1650 * \bar{x}=13800$
Solve for \bar{x} to find the equivalent force's location. $\bar{x}=8.36 \mathrm{ft}$ from A .

Example 4.14

The loading on the beam as shown. Determine equivalent force and couple moment acting at point O

1) The distributed loading can be divided into two parts-two triangular loads
2) Find F_{R} and its location for each of these distributed loads
3) Determine the overall F_{R} of the point loadings and couple moment at point O

Solution Example 4.14

For the triangular loading(right) of height $6 \mathrm{kN} / \mathrm{m}$ and width 7.5 m ,
$\mathrm{F}_{\mathrm{R} 1}=(0.5)(6)(7.5)=22.5 \mathrm{kN}$
and its line of action is at $\mathrm{x}^{-}=(2 / 3)(7.5)=5 \mathrm{~m}$ from O
For the triangular loading (left) of height $6 \mathrm{kN} / \mathrm{m}$ and width 4.5 m ,
$\mathrm{F}_{\mathrm{R} 2}=(0.5)(6)(4.5)=13.5 \mathrm{kN}$
and its line of action is at $\mathrm{x}_{2}^{-}=7.5+(1 / 3)(4.5)=9 \mathrm{~m}$ from O

Solution Example 4.14

For the combined loading of the three forces, add them.
$F_{R}=22.5+13.5+15=51 \mathrm{kN}$

The couple moment at point O will be

$$
+\left(M_{R O}=500+5(22.5)+9(13.5)+12(15)=914 \mathrm{kN} \cdot \mathrm{~m}\right.
$$

Conclusion of The Chapter 4

- Conclusions
- The reduction of force simple loading has been identified
- The external effects caused by a coplanar distributed load acting on a body can be represented by a single resultant force
- The reduction of force analysis have been implemented to solve resultant force and moment problems in specified axis

