University of Cihan-Sulaimaniya
 Engineering Faculty
 Architectural Engineering Department

 ENGINEERING MECHANICS
Chapter 4: Force System Resultants

2nd Grade- Fall Semester 2023-2024
Instructor: Diyari B. Hussein

Chapter Description

- Aims
- To explain the Moment of Force (2D-scalar formulation \& 3D-Vector formulation)
- To explain the Principle Moment
- To explain the Moment of a Couple
- To explain the Simplification of a Force and Couple System
- To explain the Reduction of Simple Distributed Loading
- Expected Outcomes
- Able to solve the problems of MOF and COM in the mechanics applications by using principle of moments
- References
- Russel C. Hibbeler. Engineering Mechanics: Statics \& Dynamics, $14^{\text {th }}$ Edition

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Chapter Outline

1. Moment of Force (MOF) -Part I
2. Principle of Moment -Part II
3. Moment of Couple (MOC) Part III
4. Simplification of a Force and Couple System
5. Reduction of Simple Distributed Loading- part IV

4.2 Principle of Moment

Varignon's Theorem states that "Moment of a force about a point is equal to the sum of the moments of the forces' components about the point"

$$
\begin{aligned}
& \quad \mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}, \\
& \mathbf{M}_{\mathrm{O}}=\mathbf{r} X \mathbf{F}_{1}+\mathbf{r} X \mathbf{F}_{2} \\
& =\mathbf{r} X\left(\mathbf{F}_{1}+\mathbf{F}_{2}\right) \\
& =\mathbf{r} \times \mathbf{F}
\end{aligned}
$$

4.2 Principle of Moment

- The guy cable exerts a force \mathbf{F} on the pole and creates a moment about the base at A

$$
M_{A}=F d
$$

- If the force is replaced by F_{x} and F_{y} at point B where the cable acts on the pole, the sum of moment about point A yields the same resultant moment
- F_{y} create zero moment about A

$$
M_{A}=F_{x} h
$$

- Apply principle of transmissibility and slide the force where line of action intersects the ground at C , F_{x} create zero moment about A

$$
M_{A}=F_{y} b
$$

Example 4.5

A 200 N force acts on the bracket. Determine the MOF about point A

(a)

$$
\mathrm{M}_{\mathrm{O}}=\mathrm{Fd}
$$

η

Solution Example 4.5

A 200 N force acts on the bracket. Determine the MOF about point A

Method 1:

From trigonometry using triangle BCD ,

$$
\begin{aligned}
\mathrm{CB} & =\mathrm{d}=100 \cos 45^{\circ}=70.71 \mathrm{~mm} \\
& =0.07071 \mathrm{~m}
\end{aligned}
$$

Thus,
$\mathrm{M}_{\mathrm{A}}=\mathrm{Fd}=200 \mathrm{~N}(0.07071 \mathrm{~m})$
$=14.1 \mathrm{~N} . \mathrm{m}$ (CCW)

(b)

Solution Example 4.5

A 200 N force acts on the bracket. Determine the MOF about point A

- Resolve 200N force into xand y components
- Principle of M oments

$$
M_{A}=\Sigma F d
$$

$$
M_{A}=\left(200 \sin 45^{\circ} \mathrm{N}\right)(0.20 \mathrm{~m})-\left(200 \cos 45^{\circ}\right)(0.10 \mathrm{~m})
$$

$$
\text { = } 14.1 \mathrm{~N} . \mathrm{m}(\mathrm{CCW})
$$

(c)

Example 4.6

The force \mathbf{F} acts at the end of the angle bracket. Determine the moment of the force about point O

(a)

Solution Example 4.6

$$
M_{0}=400 \sin 30^{\circ} N(0.2 m)-400 \cos 30^{\circ} N(0.4 m)
$$

$=-98.6 \mathrm{~N} . \mathrm{m}$
=98.6N.m (CW)
As a Cartesian vector, $\mathbf{M}_{0}=\{-98.6 \mathbf{k}\} \mathrm{N} . \mathrm{m}$

(b)

