University of Cihan-Sulaimaniya
Engineering Faculty
Architectural Engineering Department
 ENGINEERING MECHANICS

Chapter 4: Force System Resultants

2nd Grade- Fall Semester 2023-2024
Instructor: Diyari B. Hussein

Chapter Description

- Aims
- To explain the Moment of Force (2D-scalar formulation \& 3D-Vector formulation)
- To explain the Principle Moment
- To explain the Moment of a Couple
- To explain the Simplification of a Force and Couple System
- To explain the Reduction of Simple Distributed Loading
- Expected Outcomes
- Able to solve the problems of MOF and COM in the mechanics applications by using principle of moments
- References
- Russel C. Hibbeler. Engineering Mechanics: Statics \& Dynamics, $14^{\text {th }}$ Edition

Chapter Outline

1. Moment of Force (MOF) -Part I
2. Principle of Moment -Part II
3. Moment of Couple (MOC) Part III
4. Simplification of a Force and Couple System
5. Reduction of Simple Distributed Loading- part IV

4.1 Moment of a Force

- Moment can be defined as turning force
- The tendency of a force to rotate a rigid body about any defined axis is called the moment of the force about the axis
- It is also called a torque or twist moment that tendency of a force to rotate a body about the axis
- It is a vector, so its has both magnitude and direction (right handrule)
- +ve CCW \& -ve CW
- Unit used is N.m
- In a 2-D case, the magnitude of the moment

Moment of a force in 2-D (scalar formulation)

$$
\mathrm{M}_{\mathrm{O}}=\mathrm{Fd}
$$

direction is counter-clockwise.

$\mathbf{M}_{\mathrm{Ro}}=\sum \mathrm{Fd}$

(b)

Moment of a force in 2-D (scalar formulation)

M oment of a force does not always cause rotation

Example 4.1

This is an example of a 2-D or coplanar force system. Determine the MOF about point O

Solution Example 4.1

This is an example of a 2-D or coplanar force system. Determine the MOF about point O

Solution Example 4.1

This is an example of a 2-D or coplanar force system. Determine the MOF about point O
 rotate/ moment

$\left.\mathrm{M}_{\mathrm{O}}=\mathrm{Fd}=(60 \mathrm{~N})\left(1 \sin 45^{\circ} \mathrm{m}\right)=42.4 \mathrm{Nm}\right)(\mathrm{CCW})$

$$
\left.\mathrm{M}_{\mathrm{O}}=\mathrm{Fd}=(7 \mathrm{kN})(4 \mathrm{~m}-1 \mathrm{~m})=21 \mathrm{kNm}\right)(\mathrm{CW})
$$

Example 4.2

This is an example of a 2-D or coplanar force system. Determine the moments of the 800 N force acting on the frame about points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D

```
Step 1: FBD (Sketch outline shape)
```


$$
\left.\mathrm{M}_{\mathrm{A}}=\mathrm{Fd}=(800 \mathrm{~N})(1.5+1 \mathrm{~m})=2000 \mathrm{Nm}\right)(\mathrm{CW})
$$

Solution Example 4.2

This is an example of a 2-D or coplanar force system. Determine the moments of the 800 N force acting on the frame about points A,B,C and D

Step 1: FBD (Sketch outline shape)

Step 4: use

Step 2: det. The
line of action/ moment arm (d)
tep 3: assume tendency to rotate/moment

$$
\left.\mathrm{M}_{\mathrm{B}}=\mathrm{Fd}=(800 \mathrm{~N})(1.5 \mathrm{~m})=1200 \mathrm{Nm}\right)(\mathrm{CW})
$$

Example 4.2

This is an example of a 2-D or coplanar force system. Determine the moments of the 800 N force acting on the frame about points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D

Solution Example 4.2

This is an example of a 2-D or coplanar force system. Determine the moments of the 800 N force acting on the frame about points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and \mathbf{D}

Step 4: use
Step 3: assume tendency to rotate/ moment

Step 2: det. The

Solution Example 4.3

This is an example of a 2-D or coplanar force system. Determine the moments of the four force acting on the rod about point O

Example 4.4

Determine the moments of the 100 N force acting on the frame about point O

Solution Example 4.4

Determine the moments of the 100 N force acting on the frame about point O

Conclusion of The Chapter 4

- Conclusions
- The Moment of a Force been identified
- The Vector cross product have been implemented to solve Moment problems in Coplanar Forces Systems

