University of Cihan-Sulaimaniya
 Engineering Faculty
 Architectural Engineering Department

ENGINEERING MECHANICS

Chapter 3: Equilibrium of a Particle

$2^{\text {nd }}$ Grade- Fall Semester 2023-2024
Instructor: Diyari B. Hussein

Chapter Description

- Aims
- To explain the Equilibrium Equation
- To explain the Free Body Diagram
- To apply the Equations of Equilibrium to solve particle equilibrium problems in Coplanar Force System (2-D \&3-D)
- Expected Outcomes
- Able to solve the problems of a particle or rigid body in the mechanics applications by using Equilibrium Equation
- References
- Russel C. Hibbeler. Engineering Mechanics: Statics \& Dynamics, $14^{\text {th }}$ Edition

Chapter Outline

1. Equilibrium Equation
2. Free Body Diagram
3. Coplanar Force Systems (2-D)
4. Example

3.1 Equilibrium Equation

- Equilibrium means the forces are balanced but not necessarily equal

- In physic, it means equal balance which the opposing forces or tendencies neutralize each other

- A body at rest or in uniform motion (velocity) is in equilibrium

Condition for the Equilibrium of a Particle

How to know the body is in Equilibrium?

- Particle at equilibrium if - At rest -Moving at constanta constant velocity
- Newton's first law of motion

$$
\Sigma \mathbf{F}=0
$$

where $\sum \mathbf{F}$ is the vector sum of all the forces acting on the particle

$$
\begin{array}{ll}
+\rightarrow \quad \sum F_{x}=0 ; & T_{\mathrm{B}} \cos 30^{\circ}-T_{\mathrm{D}}=0 \\
+\uparrow & \sum \mathbf{F}_{\mathrm{y}}=0 ;
\end{array} \mathrm{T}_{\mathrm{B}} \sin 30^{\circ}-2.452 \mathrm{kN}=0
$$

Condition for the Equilibrium of a Particle

- Newton's second law of motion

$$
\Sigma F=m a
$$

- When the force fulfill Newton's first law of motion,

$$
\begin{aligned}
\mathrm{ma} & =0 \\
\mathbf{a} & =0
\end{aligned}
$$

therefore, the particle is moving in constant velocity or at rest

Static Equilibrium is when the body at rest
 If the Dynamic Equilibrium, the body move and continue to move

Application of Equilibrium Equation

 Paddle the boat

Application of Equilibrium Equation

Measure the forces, direction and size of cable AB

3.2 Free Body Diagram (FBD)

FBD is a sketch to show only the forces acting on selected body

3.2 Free Body Diagram (FBD)

- Best representation of all the unknown forces ($\Sigma \mathbf{F}$) which acts on a body
- A sketch showing the particle "free" from the surroundings with all the forces acting on it

Cables and Pulley

- Cables (or cords) are assumed to have negligible weight and they cannot stretch
- A cable only support tension or pulling force
- Tension always acts in the direction of the cable
- Tension force in a continuous cable must have a constant magnitude for equilibrium
- For any angle θ, the cable is subjected to a constant tension \boldsymbol{T} throughout its length

Cable is in tension
With a frictionless pulley and cable $\mathrm{T}_{1}=\mathrm{T}_{2}$.

3.3 Coplanar Systems 2-D

- A particle is subjected to coplanar forces in the $x-y$ plane
- Resolve into \mathbf{i} and \mathbf{j} components for equilibrium

$$
\begin{aligned}
& \sum F_{x}=0 \\
& \sum F_{y}=0
\end{aligned}
$$

- Scalar equations of equilibrium require that the algebraic sum of the x and y components to equal o (zero)

Scalar Notation

- Sense of direction = an algebraic sign that corresponds to the arrowhead direction of the component along each axis
- For unknown magnitude, assume arrowhead sense of the force
- Since magnitude of the force is always positive, if the scalar is negative, the force is acting in the opposite direction

Step to draw FBD

Step 1: Sketch outline shape

Step 4: Apply EE and calculate the unknown forces(can be write in letters)

Select the correct FBD of P article A

A)

B)
D)
C)

D)

FBD

Using this FBD of Point C, the sum of forces in the x-direction (ΣF_{x}) is_. Use a sign convention of $+\rightarrow$.
A) $F_{2} \sin 50^{\circ}-20=0$

B) $F_{2} \cos 50^{\circ}-20=0$
C) $F_{2} \sin 50^{\circ}-F_{1}=0$
D) $F_{2} \cos 50^{\circ}+20=0$

Example 3.1

This is an example of a 2-D or coplanar force system. If the whole assembly is in equilibrium, then particle A is also in equilibrium. Determine the tensions in the cables for a given weight of cylinder $=$ 40kg

Step 1: FBD @ A (S ketch outline shape)

Solution Example 3.1

FBD at A

Step 2:Show all the forces that act on body and indicate the active (set the body in motion) or reactive forces (tend to resist the motion)

Solution Example 3.1

Step 4: Apply EE and calculate the unknown forces(can
be write in letters)

Since particle A is in equilibrium, the net force at A is zero.
So $F_{B}+F_{C}+F_{D}=0$
or $\Sigma F=0$
FBD at A

In general, for a particle in equilibrium,
$\Sigma F=0$ or $\Sigma \mathrm{F}_{\mathrm{x}} i+\Sigma \mathrm{F}_{\mathrm{y}} j=0=0 \boldsymbol{i}+0 \boldsymbol{j}$ (a vector equation)
Or, written in a scalar form,
$\Sigma F_{x}=0$ and $\Sigma F_{y}=0$

- Two scalar equations of equilibrium ($\mathrm{E}-\mathrm{of}-\mathrm{E}$)
- Used to solve for up to two unknowns

Solution Example 3.1

Write the scalar E-of-E:

$$
\begin{aligned}
& +\rightarrow \Sigma F_{x}=F_{B} \cos 300-F_{D}=0 \\
& +\uparrow \Sigma F_{y}=F_{B} \sin 300-392.4 \mathrm{~N}=0
\end{aligned}
$$

Solving the second equation, $\mathrm{F}_{\mathrm{B}}=785 \mathrm{~N} \rightarrow$

From the first equation, $\underline{F}_{\underline{D}}=680 \mathrm{~N} \leftarrow$

Example 3.2

This is an example of a 2-D or coplanar force system. If the whole assembly is in equilibrium, then particle E is also in equilibrium. Determine the tensions in the cables DE,EA and EB for a given weight of cylinder $=40 \mathrm{~kg}$

Step 3

Solution Example 3.2

FBD at point E

Step 3
Step 4
Applying the scalar E-of-E at E,
$+\rightarrow \sum \mathrm{F}_{\mathrm{x}}=-\mathrm{T}_{\mathrm{ED}}+\left(40^{*} 9.81\right) \cos 30^{\circ}=0$
$+\uparrow \sum \mathrm{F}_{\mathrm{y}}=\left(40^{*} 9.81\right) \sin 30^{\circ}-\mathrm{T}_{\mathrm{EA}}=0$
Solving the above equations,

$$
\underline{T}_{\underline{E D}}=340 \mathrm{~N} \leftarrow \quad \text { and } \quad \mathrm{T}_{\mathrm{EA}}=196 \mathrm{~N} \downarrow
$$

Example 3.3

This is an example of a 2-D or coplanar force system. If the whole assembly is in equilibrium, then particle C and D are in equilibrium. Determine the force in each cables for a given weight of lamp $=20 \mathrm{~kg}$

Solution Example 3.3

 $\& F_{D E}$

Applying the scalar E-of-E at D,
$+\uparrow \sum \mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{DE}} \sin 30^{\circ}-20(9.81)=0$
$+\infty F_{x}=F_{D E} \cos 30^{\circ}-F_{C D}=0$
Solving the above equations,

$$
F_{D E}=392 \mathrm{~N} \quad \text { and } \mathrm{F}_{\mathrm{CD}}=340 \mathrm{~N}
$$

Solution Example 3.3

Step 2: Draw FBD @ point Cto solve $F_{C B} \& F_{C A}$

Applying the scalar E-of-E at C,
$\rightarrow \sum F_{X}=340-F_{B C} \sin 45^{\circ}-F_{A C}(3 / 5)=0$
$+\uparrow \sum F_{y}=F_{A C}(4 / 5)-F_{B C} \cos 45^{\circ}=0$
Solving the above equations,

$$
\underline{F}_{B C}=275 \mathrm{~N} \swarrow \text { and } \underline{F}_{A C}=243 \mathrm{~N}
$$

Conclusion of The Chapter 3

- Conclusions
- The Equilibrium and FBD have been identified
- The Equilibrium Equation have been implemented to solve a particle problems in Coplanar Forces Systems

