University of Cihan-Sulaimaniya

Engineering Faculty
Architectural Engineering Department

ENGINEERING MECHANICS

Chapter 2: Force Vectors (Static)

$2^{\text {nd }}$ Grade- Fall Semester 2023-2024
Instructor: Diyari B. Hussein

Chapter Description

- Aims
- To review the Parallelogram Law and Trigonometry
- To explain the Force Vectors
- To explain the Vectors Operations (Parlaw \& Cartesian)
- To express force and position in Cartesian Vectors
- Expected Outcomes
- Able to solve the problems of force vectors in the mechanics applications by using Cartesian Coordinate System
- References
- Russel C. Hibbeler. Engineering Mechanics: Statics \& Dynamics, $14^{\text {th }}$ Edition

Chapter Outline

1. Scalars and Vectors - part I
2. Vectors Operations - part I
3. Vectors Addition of Forces - part I
4. Cartesian Vectors - part II
5. Force and Position Vectors - part III

2.4 Cartesian Vector

- It is a coordinate system
- Use to describe position
- Position can be defined by its coordinate axis
- It is a unit vector $u_{A}=A / A$
- Its magnitude is $\mathbf{1}$ and dimensionless
- It is denoted as $\mathbf{i}, \mathbf{j}, \mathbf{k}$
- \mathbf{i} is a unit vector pointing in the \mathbf{x} direction
- \mathbf{j} is a unit vector pointing in the \mathbf{y} direction
- \mathbf{k} is a unit vector pointing in the \mathbf{z} direction
- +ve direction based on right handed
- It is important in air transport
- Air Traffic controller or pilots must know the location of every aircraft in the sky
- Without the coordinate system, the position or location of aircraft is difficult to know and may lead to aircraft crashes

Application of Cartesian Vector

- Military Service

- Position of any body in the real world

- Location / Geographic/Latitude/longitude

- Mapping Project

Application of Cartesian Vector

$$
F=\mathrm{F}_{\mathrm{x}} i+\mathrm{F}_{\mathrm{y}} j
$$

Application of Cartesian Vector

Application of Cartesian Vector

Given

$$
\begin{aligned}
& A=A_{X} i+A_{Y} j+A_{Z} k \\
& B=B_{X} i+B_{Y} j+B_{Z} k
\end{aligned}
$$

If $A+B=C$
Sum of the vectors \boldsymbol{A} and \boldsymbol{B} can obtained vector \boldsymbol{C}

$$
\mathbf{F}_{R}=\Sigma \mathbf{F}=\Sigma F_{x} \mathbf{i}+\Sigma F_{y} \mathbf{j}+\Sigma F_{z} \mathbf{k}
$$

$$
\begin{aligned}
C & =\left(A_{X} i+A_{Y} j+A_{Z} k\right)+\left(B_{X} i+B_{Y} j+B_{Z} k\right) \\
& =\left(A_{X}+B_{X}\right) i+\left(A_{Y}+B_{Y}\right) j+\left(A_{Z}+B_{Z}\right) k \\
& =C_{X} i+C_{Y} j+C_{Z} k
\end{aligned}
$$

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Application of Cartesian Vector

It should be noted that in 3-D vector information is given as:

- Magnitude and the coordinate direction angles, or
- Magnitude and projection angles

Magnitude of a Cartesian Vector \boldsymbol{A} in the $\mathrm{x}-\mathrm{y}$ plane is A^{\prime}

- From the colored triangle,

$$
A=\sqrt{A^{\prime 2}+A_{z}^{2}}
$$

- From the shaded triangle,

$$
A^{\prime}=\sqrt{A_{x}^{2}+A_{y}^{2}}
$$

- The magnitude of the position vector \boldsymbol{A}
-Combining the equations gives magnitude of \mathbf{A}

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

Example 2.4

Determine the X and Y components of F_{1} and F_{2} in Cartesian vectors

(a)

(b)
$F_{1 x}=-200 \sin 30^{\circ} \mathrm{N}=-100 \mathrm{~N}=100 \mathrm{~N} \leftarrow$ $F_{1 y}=200 \cos 30^{\circ} N=173 N=173 N \uparrow$

Cartesian Vector Notation:

$$
\mathbf{F}_{1}=\{-100 \mathbf{i}+173 \mathbf{j}\} N
$$

Example 2.4

Determine the X and Y components of F_{1} and F_{2} in Cartesian vectors

(a)
$\frac{F_{2 x}}{260 N}=\frac{12}{13}$
$F_{2 x}=260 N\left(\frac{12}{13}\right)=240 N \rightarrow \quad F_{2 y}=260 N\left(\frac{5}{13}\right)=100 N \downarrow$
Cartesian Vector Notation:

$$
F_{2}=\{240 i-100 j\} N
$$

Example 2.5

Determine the magnitude and direction of the resultant force

Solution Example 2.5

Step 1

Resolve the forces into components x and y

$$
F_{1}=\{0 i+300 j\} \mathrm{N}
$$

$$
\begin{aligned}
F_{2} & =\left\{-450 \cos \left(45^{\circ}\right) i+450 \sin \left(45^{\circ}\right) j\right\} \mathrm{N} \\
& =\{-318.2 i+318.2 j\} \mathrm{N} \\
F_{3} & =\{(3 / 5) 600 i+(4 / 5) 600 j\} \mathrm{N} \\
& =\{360 i+480 j\} \mathrm{N}
\end{aligned}
$$

Solution Example 2.5

Step 2

- Summing up all the i and j components respectively:

$$
\begin{aligned}
F_{R} & =\{(0-318.2+360) i+(300+318.2+480) j\} \mathrm{N} \\
& =\{41.80 i+1098 j\} \mathrm{N}
\end{aligned}
$$

- Magnitude and direction:
$F_{R}=\left((41.80)^{2}+(1098)^{2}\right)^{1 / 2}=1099 \mathrm{~N}$
$\phi=\tan ^{-1}(1098 / 41.80)=\underline{87.8^{\circ}}$

Example 2.6

Determine the magnitude and direction of the resultant force

Solution Example 2.6

Step 1

Resolve the forces into components

$$
\begin{aligned}
F_{3}= & \left\{-750 \sin \left(45^{\circ}\right) i+750 \cos \left(45^{\circ}\right) j\right\} \mathrm{N} \\
& \{-530.3 i+530.3 j\} \mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
F_{2} & =\left\{-625 \sin \left(30^{\circ}\right) i-625 \cos \left(30^{\circ}\right) j\right\} \mathrm{N} \\
& =\{-312.5 i-541.3 j\} \mathrm{N}
\end{aligned}
$$

Solution Example 2.6

Step 2

- Summing all the i and j components, respectively:

$$
\begin{aligned}
\boldsymbol{F}_{\mathrm{R}} & =\{(680-312.5-530.3) i+(-510-541.3+530.3) j\} \mathrm{N} \\
& =\{-162.8 i-520.9 j\} \mathrm{N}
\end{aligned}
$$

Step 3

- Magnitude and direction (angle):
$\mathrm{F}_{\mathrm{R}}=\left((-162.8)^{2}+(-520.9)^{2}\right)^{1 / 2}=\underline{546 \mathrm{~N}}$
$\phi=\tan ^{-1}(520.9 / 162.8)=\underline{72.6^{\circ}}$
From the positive x-axis, $\theta=253^{\circ}$

Example 2.7

Determine the magnitude of the resultant force acting on the plate and its direction, measured counterclockwise from the positive x axis.

Solution Example 2.7

Rectangular Components: By referring to Fig. a, the x and y components of $\mathbf{F}_{1}, \mathbf{F}_{2}$, and \mathbf{F}_{3} can be written as

$$
\begin{array}{lr}
\left(F_{1}\right)_{x}=900 \mathrm{~N} & \left(F_{1}\right)_{y}=0 \\
\left(F_{2}\right)_{x}=750 \cos 45^{\circ}=530.33 \mathrm{~N} & \left(F_{2}\right)_{y}=750 \sin 45^{\circ}=530.33 \mathrm{~N} \\
\left(F_{3}\right)_{x}=650\left(\frac{4}{5}\right)=520 \mathrm{~N} & \left(F_{3}\right)_{y}=650\left(\frac{3}{5}\right)=390 \mathrm{~N}
\end{array}
$$

Resultant Force: Summing the force components algebraically along the x and y axes, we have

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma\left(F_{R}\right)_{x}=\Sigma F_{x} ; & \left(F_{R}\right)_{x}=900+530.33+520=1950.33 \mathrm{~N} \rightarrow \\
+\uparrow \Sigma\left(F_{R}\right)_{y}=\Sigma F_{y} ; & \left(F_{R}\right)_{y}=530.33-390=140.33 \mathrm{~N} \uparrow
\end{array}
$$

The magnitude of the resultant force \mathbf{F}_{R} is

$$
F_{R}=\sqrt{\left(F_{R}\right)_{x}^{2}+\left(F_{R}\right)_{y}^{2}}=\sqrt{1950.33^{2}+140.33^{2}}=1955 \mathrm{~N}=1.96 \mathrm{kN} \mathrm{Ans}
$$

The direction angle θ of \mathbf{F}_{R}, measured clockwise from the positive x axis, is

$$
\theta=\tan ^{-1}\left[\frac{\left(F_{R}\right)_{y}}{\left(F_{R}\right)_{x}}\right]=\tan ^{-1}\left(\frac{140.33}{1950.33}\right)=4.12^{\circ} \quad \text { Ans. }
$$

Solution Example 2.7

Example 2.8

Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive x axis.

Solution Example 2.8

$$
\begin{array}{ll}
\rightarrow F_{R x}=\Sigma F_{x} ; & F_{R x}=\frac{4}{5}(850)-625 \sin 30^{\circ}-750 \sin 45^{\circ}=-162.83 \mathrm{~N} \\
+\uparrow F_{R y}=\Sigma F_{y} ; & F_{R y}=-\frac{3}{5}(850)-625 \cos 30^{\circ}+750 \cos 45^{\circ}=-520.94 \mathrm{~N} \\
& F_{R}=\sqrt{(-162.83)^{2}+(-520.94)^{2}}=546 \mathrm{~N} \\
& \phi=\tan ^{-1}\left(\frac{520.94}{162.83}\right)=72.64^{\circ} \\
& \theta=180^{\circ}+72.64^{\circ}=253^{\circ}
\end{array}
$$

Example 2.9

Three forces act on the bracket. Determine the magnitude and direction θ of F_{1} so that the resultant force is directed along the positive x^{\prime} axis and has a magnitude of 800 N .

Solution Example 2.9

$\xrightarrow{\text { t }} F_{R x}=\Sigma F_{x} ; \quad 800 \sin 60^{\circ}=F_{1} \sin \left(60^{\circ}+\theta\right)-\frac{12}{13}(180)$
$+\uparrow F_{R y}=\Sigma F_{y} ; \quad 800 \cos 60^{\circ}=F_{1} \cos \left(60^{\circ}+\theta\right)+200+\frac{5}{13}(180)$
$60^{\circ}+\theta=81.34^{\circ}$
$\theta=21.3^{\circ}$
$F_{1}=869 \mathrm{~N}$

Conclusion of The Chapter 2 part II

- Conclusions

- The Cartesian vector have been identified and determined in the mechanics
- The 2-D and 3-D vector has been represent in a Cartesian coordinate system
- The magnitude and direction of 2-D of resultant forces have been determined in a Cartesian coordinate system

