University of Cihan-Sulaimaniya

Engineering Faculty
Architectural Engineering Department

ENGINEERING MECHANICS

Chapter 2: Force Vectors (Static)

$2^{\text {nd }}$ Grade- Fall Semester 2023-2024
Instructor: Diyari B. Hussein

Chapter Description

- Aims
- To review the Parallelogram Law and Trigonometry
- To explain the Force Vectors
- To explain the Vectors Operations
- To express force and position in Cartesian Vectors
- Expected Outcomes
- Able to solve the problems of force vectors in the mechanics applications by using Parallelogram law and Trigonometry
- References
- Russel C. Hibbeler. Engineering Mechanics: Statics \& Dynamics, $14^{\text {th }}$ Edition

Chapter Outline

1. Scalars and Vectors - part I
2. Vectors Operations - part I
3. Vectors Addition of Forces - part I
4. Cartesian Vectors - part II
5. Force and Position Vectors - part III

2.1 Scalars and Vectors

Position of the plane is 25 miles from west southwest

quantity
magnitude
direct

Vectors

- Represent by a letter with an arrow over it such as A or \mathbf{A}
- Magnitude is designated as $|\vec{A}|$ or simply A
- Commonly, vector is presented as A and its magnitude (positive quantity) as A

Characteristics of Vectors

- Represented graphically as an arrow
- Length of arrow = Magnitude of Vector
- Angle between the reference axis and arrow's line of action = Direction of Vector
- Arrowhead = Sense of Vector

Example of Vectors

Magnitude of Vector $=4$ units
Direction of Vector $=20^{\circ}$ measured counterclockwise from the horizontal axis

Sense of Vector = Upward and to the right

The point O is called tail of the vector and the point P is called the tip or head

2.2 Vector Operations

- Multiplication and Division of a Vector by a Scalar
- Product of vector \mathbf{A} and scalar $\mathrm{a}=\mathrm{a} \mathbf{A}$
- Magnitude = $|a A|$
- If a is positive, sense of $a \mathbf{A}$ is the same as sense of \mathbf{A}
- If a is negative sense of
- aA, it is opposite to the

- sense of \mathbf{A}

2.2 Vector Operations

- Multiplication and Division of a Vector by a Scalar
- Negative of a vector is found by multiplying the vector by (-1)
- Law of multiplication applies
- Eg: $\mathbf{A} / \mathrm{a}=(1 / \mathrm{a}) \mathbf{A}, \mathrm{a} \neq 0$

2.2 Vector Operations

- Vector Addition
- Addition of two vectors \mathbf{A} and \mathbf{B} gives a resultant vector \mathbf{R} by the parallelogram law
- Result R can be found by triangle construction
- Communicative
- $\mathrm{Eg}: \mathbf{R}=\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$

2.2 Vector Operations

- Vector Addition

(a)
(b)

Tirangle construction

2.2 Vector Operations

- Vector Addition
- Special case: Vectors A and B are collinear (both have the same line of action)

Addition of collinear vectors

2.2 Vector Operations

- Vector Subtraction
- Special case of addition
- Eg: $\mathbf{R}^{\prime}=\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B})$
- Rules of Vector Addition Applies

Triangle construction

2.2 Vector Operations

- Resolution of Vector
- Any vector can be resolved into two components by the parallelogram law
- The two components \mathbf{A} and \mathbf{B} are drawn such that they extend from the tail or \mathbf{R} to points of intersection

(b)

2.3 Vector Addition of Forces

- When two or more forces are added, successive applications of the parallelogram law is carried out to find the resultant
- Eg: Forces $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3} acts at a point \mathbf{O}
- First, find resultant of
- $F_{1}+F_{2}$
- Resultant,
- $F_{R}=\left(F_{1}+F_{2}\right)+F_{3}$

Example of Vector Addition of Forces

- F_{a} and F_{b} are forces exerting on the hook.
- Resultant, \mathbf{F}_{c} can be found using the parallelogram law
- Lines parallel to a and b
- from the heads of F_{a} and F_{b} are
- drawn to form a parallelogram
- Similarly, given $\mathbf{F}_{\mathrm{c}}, \mathbf{F}_{\mathrm{a}}$ and F_{b}
- can be found

Steps to Solve the Vectors Operations

- Parallelogram Law
- Make a sketch using the parallelogram law
- Two components forces add to form the resultant force
- Resultant force is shown by the diagonal of the parallelogram
- The components is shown by the sides of the parallelogram

Steps to Solve the Vectors Operations

- Parallelogram Law
- To resolve a force into components along two axes directed from the tail of the force
- Start at the head, constructing lines parallel to the axes
- Label all the known and unknown force magnitudes and angles
- Identify the two unknown components

Steps to Solve the Vectors Operations

- Trigonometry
- Redraw half portion of the parallelogram
- Magnitude of the resultant force can be determined by the law of cosines
- Direction if the resultant force can be determined by the law of sines

Steps to Solve the Vectors Operations

- Trigonometry

- Magnitude of the two components can be determined by the law of sines

$$
\begin{aligned}
& \text { Sine law: } \\
& \frac{A}{\sin a}=\frac{B}{\sin b}=\frac{C}{\sin C} \\
& \text { Cosine law: } \\
& C=\sqrt{A^{2}+B^{2}-2 A B \cos C}
\end{aligned}
$$

C

Example 2.1

The screw eye is subjected to two forces F_{1} and F_{2}. Determine the magnitude and direction of the resultant force.

(a)

Solution Example 2.1

From Parallelogram Law

Unknown: magnitude of F_{R} and angle θ

Solution Example 2.1

Trigonometry
Law of Cosines

(c)
$F_{R}=\sqrt{(100 N)^{2}+(150 N)^{2}-2(100 N)(150 N) \cos 115^{\circ}}$
$=\sqrt{10000+22500-30000(-0.4226)}$
$=212.6 \mathrm{~N}$
$=213 \mathrm{~N}$

Solution Example 2.1

Trigonometry
Law of Sines
$\frac{150 N}{\sin \theta}=\frac{212.6 N}{\sin 115^{\circ}}$

(c)
$\sin \theta=\frac{150 N}{212.6 N}(0.9063)$
$\theta=39.8^{\circ}$

Solution Example 2.1

Trigonometry
Direction Φ of F_{R} measured from the horizontal
$\phi=39.8^{\circ}+15^{\circ}$

(c)

Example 2.2

Resolve the 1000 N ($\approx 100 \mathrm{~kg}$) force acting on the pipe into the components in the (a) x and y directions, (b) x ' and y directions.

(a)

Solution Example 2.2

(a) Parallelogram Law

From the vector diagram,

(c)

Solution Example 2.2

(b) Parallelogram Law

$$
F=F_{x}+F_{y^{\prime}}
$$

Solution Example 2.2

(b) Law of Sines

$$
\begin{aligned}
& \frac{F_{x^{\prime}}}{\sin 50^{\circ}}=\frac{1000 \mathrm{~N}}{\sin 60^{\circ}} \\
& F_{x^{\prime}}=1000 \mathrm{~N}\left(\frac{\sin 50^{\circ}}{\sin 60^{\circ}}\right)=884.6 \mathrm{~N} \\
& \frac{F_{y}}{\sin 70^{\circ}}=\frac{1000 \mathrm{~N}}{\sin 60^{\circ}} \\
& F_{y}=1000 N\left(\frac{\sin 70^{\circ}}{\sin 60^{\circ}}\right)=1085 \mathrm{~N}
\end{aligned}
$$

(e)

Example 2.3

The force \mathbf{F} acting on the frame has a magnitude of 500 N and is to be resolved into two components acting along the members $A B$ and AC. Determine the angle θ, measured below the horizontal, so that components $F_{A C}$ is directed from A towards C and has a magnitude of 400 N .

(a)

Solution Example 2.3

(a)

Parallelogram Law
$500 N=F_{A B}+F_{A C}$

Solution Example 2.3

Law of Sines
$\frac{400 N}{\sin \phi}=\frac{500 N}{\sin 60^{\circ}}$
$\sin \phi=\left(\frac{400 N}{500 N}\right) \sin 60^{\circ}$
$\sin \phi=0.6928$
$\phi=43.9^{\circ}$

(c)

Solution Example 2.3

Hence,
$\theta=180^{\circ}-60^{\circ}-43.9^{\circ}=76.1^{\circ} \angle^{\theta}$

By Law of Cosines or Law of Sines

Hence, show that $F_{A B}$
(c)
has a magnitude of 561 N

Conclusion of The Chapter 2 part I

- Conclusions
- The scalars and vectors have been identified and implemented in the mechanics
- The vector operations have been identified and implemented in the mechanics

Thank you

