Cihan University/ Sulaymaniyah College of Health Science Medical Laboratory Analysis 4th Stage- 1st Semester **Pr. Clinical Immunology Lecture- 3: Specific Immunity**

Third line of defense: An Overview of Specific Immunity (Part-2)

2023-2024

Lecturer: Mohammed T. Salih

The adaptive (Acquired) immune system

- The adaptive immune system consists of **lymphocytes** and **their products, such as antibodies**.
- Lymphocytes are the cells of adaptive immunity that express receptors that specifically
 recognize a much wider variety of molecules produced by microbes as well as noninfectious
 substances.
- Any substance that is specifically recognized by lymphocytes or antibodies is called an antigen.
- The resistance that human acquires during life is known as acquired immunity is more specialized than other mechanisms of immunity.

Types of Adaptive Immunity

- There are two types of adaptive immunity, called humoral immunity and cell-mediated immunity.
- Humoral immunity is mediated by proteins called antibodies, which are produced by cells called B lymphocytes and provide defense against extracellular microbes.
- Cell-mediated immunity mediated by different cells which are called T lymphocytes and provide defense against intracellular microbes.

1- The Humoral Immune Response

Properties of Adaptive Immune Responses

	Feature	Functional significance		Lymphocyte Mature
1	Specificity	Ensures that distinct antigens elicit specific responses	Lymphocyte clones with diverse receptors	
2	Diversity	Enables immune system to respond to a large variety of antigens	arise in generative lymphoid organs)
3	Memory	Leads to enhanced responses to repeated exposures to the same antigens	Clones of mature lymphocytes specific for many	
4	Clonal expansion	Increases number of antigen-specific lymphocytes from a small number of naive lymphocytes	Antigen-specific	Antigen X Antigen Y
5	Specialization	Generates responses that are optimal for defense against different types of microbes	clones are activated ("selected") by antigens	
6	Contraction and homeostasis	Allows immune system to respond to newly encountered antigens	Antigen-specific	
7	Nonreactivity to self	Prevents injury to the host during responses to foreign antigens	immune responses occur	Anti-X Anti-Y Anti-Y

Phases of Adaptive Immune Response

Antigen

Acquired immune response is initiated by:

- 1. Recognition of an antigen by certain lymphocytes,
- 2. Activation of these lymphocytes,
- 3. Differentiation and proliferation into effector cells,
- 4. Effector cells eliminate antigen,
- 5. Development of memory cells,
- 6. Memory cells elicit a rapid and long-term response to re-exposure.

Antigen

elimination

Contraction

(homeostasis)

Lymphocyte

activation

Memory

Lymphocytes

- All lymphocytes arise from stem cells in the bone marrow.
- Naive lymphocytes express receptors for antigens <u>but do not perform the functions that</u> are required to eliminate antigens.
- These cells reside in and circulate between peripheral lymphoid organs and survive for several weeks or months, waiting to find and respond to antigen.
- Naive lymphocytes <u>recognize foreign antigens</u> to initiate adaptive immune responses.
- Naive lymphocytes need signals in addition to antigens to proliferate and differentiate into effector cells.

Stages in the Life History of Lymphocytes

Classes of Lymphocytes

- **Different classes of lymphocytes** in the adaptive immune system recognize distinct types of antigens and differentiate into **effector cells** whose function is to eliminate the antigens.
- 1. <u>B lymphocytes</u> recognize soluble or cell surface antigens and differentiate into antibody-secreting cells.
- 2. <u>Helper T lymphocytes</u> recognize antigens on the surfaces of antigen-presenting cells and secrete cytokines, which stimulate different mechanisms of immunity and inflammation.
- 3. <u>Cytotoxic T lymphocytes</u> recognize antigens in infected cells and kill these cells. T lymphocytes recognize peptides that are displayed by MHC molecules.
- **4.** <u>**Regulatory T cells**</u> limit the activation of other lymphocytes, especially of T cells, and prevent autoimmunity.

Acquired Immunity

Immunity that develops during your lifetime

Active Immunity

Passive Immunity

Natural

Antibodies developed in response to an infection

Artificial Antibodies developed in response to a vaccination

Natural Antibodies received from mother, through breast milk

Artificial

Antibodies received from a medicine, from a gamma globulin injection or infusion

Immune organs

- **1. Central immune organs or primary lymphoid organs:** The site that lymphocytes **generate** and **mature** into functional cells.
 - 1. Thymus
 - 2. Bone marrow
- **2. Peripheral immune organs or secondary lymphoid organs and tissues:** The sites that T and B lymphocytes reside in and respond to antigens.
 - 1. Spleen,
 - 2. Lymph nodes,
 - 3. Tonsils
 - 4. Appendix
 - 5. MALT (mucosal associated lymphatic tissue)

2- Cell-Mediated Immune Response

- Accomplished by T cells to protect against viruses, tumors, and pathogens resistant to phagocytosis.
- There are several types of mature T cells:
 - ✓Cytotoxic T cells (Tc),
 - ✓T-helper (Th)
 - ✓ Regulatory T cells including T-helper (Th) and T-suppressor (Ts) cells,
 - ✓ Memory cells.

Immunologic Memory

***** Primary Response:

- Occurs the first time the body is exposed to a particular antigen.
- A latent period of 5-7 days occurs during which B cell clonal selection occurs.
- Activated by Th2 cells (T-helper cells, type 2).
- IgM is detected in blood first, followed by IgG.
- Memory B cells form.

Secondary Response:

- Occurs each successive time that the body encounters this antigen.
- Memory B cells are rapidly activated and produce large amounts of IgG very quickly.

Specific immunity

Humoral Immunity, Antigen, Antibody & Cytokines.

Antigen (Ag):

- Is a foreign substances usually **protein** and sometimes **polysaccharide**.
- Generates a specific immune response and induces the formation of a **specific antibody**

or T cells response or both.

• Antigens react with the products of a specific immune response (Ab).

Substances that Act as Antigens

1. Infectious materials:

a. Microbial structures (cell walls, capsules, flagella, pili, viral capsids, envelope associated glycoproteins, etc.

b. Microbial toxins.

2. Noninfectious materials:

- a. Allergens (dust, pollen, hair, foods, drugs, and other agents causing allergic reactions);
- b. Foreign tissues and cells (from transplants and transfusions); and
- c. The body's own cells that the body fails to recognize as "normal self" (cancer cells, infected cells, cells involved in autoimmune diseases).

Structure of Antigen (Ag)

- Antigenic determinants or epitopes are components of antigen.
- Each antigen carries many **epitopes**.
- Each Y-shaped antibody molecule has at least two binding sites that can attach to a specific epitope on an antigen.
- An antibody can also bind to identical epitopes of two different cells at the same time which can cause neighboring cells to aggregate.
- Antigens combine with the antibody. The combination is very much like the lock and key analogy.

Epitope (Antigenic Determinant)

Epitope (antigenic determinant); active regions

of an immunogen (or antigen) that binds to

antigen-specific receptors on lymphocytes or to

secreted antibodies.

Immunogen: Molecule that stimulate a specific

immune response.

Epitopes: The Basic Recognition Unit

Epitopes: Antigen Regions that Interact with Antibodies

Antigens and Epitopes of a Virus

Proteins have many epitopes of different specificities.

- Each different **protein and glycoprotein** of a virus constitutes a **different antigen**.
- ***** Each **different antigen** contains a **number of different epitopes**.

Types of Antigens

Based upon the **ability of antigens** to <u>carry out their functions</u> are two types:

- 1. A **complete antigen** is able to induce antibody formation and produce a specific and observable reaction with the antibody so produced.
- 2. Hapten (**incomplete antigens**): A substance that is non-immunogenic, it can react with the products of a specific immune response with **no antibodies formation**.
- It is small molecules with a low molecular weight that could never induce an immune response when administered by themselves unless it coupled to a carrier molecule.

Hapten

Biological Type of Antigens

Depending on their **ability to induce antibody formation**, **antigens** are classified into:

- **1.** <u>**T-independent antigen:**</u> are antigens which can directly stimulate the **B cells** to produce antibody without the requirement for T cell help In general, **polysaccharides** are T-independent antigens.
 - Examples:
 - ✓ Pneumococcal
 - ✓ polysaccharide,
 - ✓ Lipopolysaccharide
 - ✓ Flagella

Biological Type of Antigens (Cont.)

2- T-dependent antigen: are those that do not

directly stimulate the production of antibody

without the help of T cells. Proteins are T-

dependent antigens.

Examples:

✓ Microbial Proteins

T-dependent and T-independent antibody responses

References

- Abbas, A. K., Lichtman, A. H., Pillai, S., & Baker, D. L. (. i. (2020). Basic immunology: Functions and disorders of the immune system (Sixth edition.).
- 2. Turgeon, M. L. (1996). Immunology & serology in laboratory medicine. St. Louis: Mosby.
- 3. Abul K. Abbas and Andrew H. Lichtman. Cellular And Molecular Immunology 2019, 6th edition .
- 4. <u>https://www.youtube.com/watch?v=G4jobV6-bFA</u>
- 5. <u>https://www.youtube.com/watch?v=ZLrIhB7GFp4</u>
- 6. <u>https://www.youtube.com/watch?v=_N1xX49AqwQ</u>
- 7. <u>https://www.youtube.com/watch?v=gYJnZGExlws</u>
- 8. <u>https://www.youtube.com/watch?v=4s6IzVbyq-4</u>