
Material App

Introduction:
• MaterialApp is Futter's one of the most powerful widgets. if you create a basic

Flutter app then the first widget you'll see is MaterialApp

• MaterialApp wraps a number of widgets that are commonly required for material

design applications.

• By wrapping your application inside the MaterialApp, you're telling your app to

use Android's Material Design, which is a design system created by Google to help

teams build high-quality digital experiences for Android, iOS, Flutter, and the web.

Introduction:

• But if you want to follow iOS design patterns, then you have to wrap

your app inside CupertinoApp. There are many widgets provided by

flutter to design your app for iOS platform.

MaterialApp
• We can consider this as an application that uses material design.

• Before creating MaterialApp we have to import material package which is

provided by flutter SDK.

• This package provides us all the widgets that we can use in our application. For

example: AppBar, Scaffold, BottomNavigationBar, Card, Chip, BottomSheet, etc.

• MaterialApp must have at least one of home, routes, onGenerateRoute, or

builder properties non-null. Without it you will get an error.

import 'package:flutter/material.dart';

Home

• This is a default route of an app.
• It means whatever is defined here is the first thing you will see on the

screen.
• It takes Widget as an input.
• Usually, we define home, signIn, signUp, splash screens, but you can

put any widget here.

MaterialApp(
home: MyFirstPage(),

);

Title

• This takes String as value.
• If you put value in title, you will not see any changes in your app. It

will still show an empty blank screen.
• You will see this title when you press the "recent apps" button

MaterialApp(
title: "Widget In Detail",
home: MyFirstPage(),

);

debugShowCheckedModeBanner
• This is a banner that indicates that currently, our app is running in

`debug mode.
• The default value of this property is true.
• To remove this banner, simply put false inside it.

MaterialApp(
debugShowCheckedModeBanner: true,
title: "Widget In Detail",
home: MyFirstPage(),

);

darkTheme

• By applying the ThemeData in the darkTheme property, we are telling

our app to use this particular ThemeData when the system requests

for DarkTheme.

MaterialApp(

darkTheme: ThemeData.dark(),

)

Themes:

• Themes are an integral part of UI for any application. Themes are

used to design the fonts and colors of an application to make it more

presentable. In Flutter, the Theme widget is used to add themes to an

application

primary = Appbar color

onPrimary = Appbar Text and Icons

Background = background color

onBackground = text on background

Surface = Card Color

onSurface = Text on Card color

Secondary = floating action button

onSecondary = Icon on floating action button

Error = error

onError = error

return MaterialApp(
theme: ThemeData(

colorScheme: const ColorScheme(
brightness: Brightness.light,) // .dark
primary: Colors.purple,
onPrimary: Colors.amber,
secondary: Colors.black87,
onSecondary: Colors.white,
error: Colors.red,
onError: Colors.red,
background: Colors.blue,
onBackground: Colors.black,
surface: Colors.red,
onSurface: Colors.white),

),

Apply a theme

• To apply your new theme, use the Theme.of(context) method when

specifying a widget’s styling properties.

Text(
“Mobile Applications",
style: TextStyle(

color:
Theme.of(context).colorScheme.onBackground,

),
),

themeMode

• This property determines which

theme will be used by the

application if both theme and

darkTheme are provided.

• The default value of themeMode is

ThemeMode.system, which means

whatever the theme of the system

will be applied by default by our

app.

MaterialApp(
themeMode: ThemeMode.dark,
theme: ThemeData(

brightness: Brightness.light,
),

darkTheme: ThemeData(
brightness: Brightness.dark,

),
home: HomePage(),

),

Example import 'package:flutter/material.dart';
void main() {
runApp(const MyApp());

}
class MyApp extends StatelessWidget {
const MyApp({super.key});
@override
Widget build(BuildContext context) {
return MaterialApp(
debugShowCheckedModeBanner: false,
theme: ThemeData(
primarySwatch: Colors.purple,

),
home: Scaffold(
appBar: AppBar(
title: const Text("welcome to first app"),

),
body: const Center(child: Text("Body

Area")),
),

); }}

route

If you want to navigate via namedRoutes, you have to first define all the routes

in the application's top-level routing table. i.e, in MaterialApp's routes property.

You can think of routes as a table where each screen is binded with a particular

path. For example, "/home" is binded with HomeScreen() widget.

• The initialRoute property defines which route the app should start with.

route

HomePage()=
“ / “

Page2()=
“/Profile“

Page1()=
“/Login_Screen “

Page3()=
“/ Search“

Example

return MaterialApp(

initialRoute: "/",

routes: {

"/": (context) => HomePage(),

"/login_Screen": (context) => Page1(),

"/Profile": (context) => Page2(),

"/Search": (context) => Page3(),

},

);

route
• Now you can use Navigator.pushNamed(context, "/login_Screen"); for

navigation.

class HomePage extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Scaffold(
body: Center(
child: ElevatedButton(
onPressed: () => Navigator.pushNamed(context, "/login_Screen"),
child: Text('To Second Screen'),

),),);
}}

Flutter Navigation and Routing

• Navigation and routing are some of the core concepts of all mobile

application, which allows the user to move between different pages.

We know that every mobile application contains several screens for

displaying different types of information.

• In Flutter, the screens and pages are known as routes,

Flutter Navigation and Routing
• In any mobile app, navigating to different pages defines the workflow of the application,

and the way to handle the navigation is known as routing. Flutter provides a basic routing

class MaterialPageRoute and two methods Navigator.push() and Navigator.pop() that

shows how to navigate between two routes. The following steps are required to start

navigation in your application

Step 1: First, you need to create two routes.

Step 2: Then, navigate to one route from another route by using the Navigator.push() method.

Step 3: Finally, navigate to the first route by using the Navigator.pop() method.

Navigator

• The Navigator.push() method is used to navigate/switch to a new

route/page/screen. Here, the push() method adds a page/route on the stack and

then manage it by using the Navigator.

• we need to use Navigator.pop() method to close the second route and return to the

first route. The pop() method allows us to remove the current route from the stack,

which is managed by the Navigator.

TextButton(
onPressed: () {
Navigator.push(
context,
MaterialPageRoute(

builder: (context) => SecondPage(),
));

},
child: Text("Open Second PAge"),
style: TextButton.styleFrom(backgroundColor: Colors.amber),

),

TextButton(
onPressed: () {
Navigator.pop(context);

},
child: Text("Open First page"),
style: TextButton.styleFrom(backgroundColor: Colors.greenAccent),

),

FirstPage.dart
SecondPage.dart

Pass Data from Page1 to Page2
class _HomeScreenState extends State<HomeScreen> {
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Navigator'),

),
body: Center(
child: ElevatedButton(

onPressed: () {
Navigator.push(
context,

MaterialPageRoute(
builder: (context) => SecondScreen(
text: "Data form page 1",
),
));
},

child: Text("Click Me")),
),

);
}

class SecondScreen extends StatelessWidget
{
final String text;

const SecondScreen(
{super.key, required this.text});

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Seccond Screen'),

),
body: Center(
child: Text('Second Screen $text'),

),
);

}
}

