
DART LANGUAGE
PART-1

WHY USE DART?

 Before you can start developing Flutter apps, you need to understand the

programming language used, namely, Dart. Google created Dart and uses it internally

with some of its big products such as Google AdWords. Made available publicly in

2011, Dart is used to build mobile, web, and server applications.

DEVELOPING THE DART HELLO WORLD PROGRAM

To develop a Dart Hello World program:

 First, create a simple file with the path D:\dart\hello_world.dart. The Dart

source code files have the .dart extension.

 Second, use your preferred editor to open the hello_world.dart file, write the

following code into the file, and save it:

void main() {
print("hello , world");

}

DEVELOPING THE DART HELLO WORLD PROGRAM

 Third, open a terminal (CMD) and execute the following command to run the
Dart file:

dart run d:\dart\hello_world.dart

 It’ll show a message like this:

Hello, World!

VISUAL STUDIO CODE

Visual Studio Code or VS Code is a popular tool for developing the Dart program.

 First, download and install VS Code.

 Second, install the Dart extension.

Once VS code is installed, you can open the project folder and click the Run button to
run the Hello, World! program as shown in the following picture:

VISUAL STUDIO CODE

Go to RUN in the menu bar

then Click Run Without

Debugging or use Shortcut

Keys Ctrl+f5

DART SYNTAX

 The Dart programming language follows the C-style syntax. If you’re familiar with

C/C++ or C#, you’ll find similarities in the Dart language.

Statements

 A statement is an instruction that declares a type or instructs the program to

perform a task. A statement is always terminated by a semicolon (;). For

example, the following program has two statements:

DART SYNTAX

 The first statement declares a string variable and initializes its value to the string
'Welcome to Dart!’:

 The second statement displays the value of the message variable to the console:

void main() {

String message = 'Welcome to Dart!';

print(message);

}

 BLOCKS

 In Dart, a block is a sequence of zero or more statements. A block is surrounded

by curly braces { } . For example, you can group statements into a block as

follows:

 Unlike a statement, a block is not terminated by a semicolon (;). In practice,

you’ll use blocks with the control flow statements like if else, while, do while,

and for.

{
String message = 'Welcome to Dart!';
print(message);

}

 IDENTIFIERS

Identifiers are names that you assign to the variables, constants, functions, etc. In Dart,
the names of identifiers follow these rules:

 The alphabetic ([a-z], [A-Z]) and underscore (_) characters can appear at any position.

 Digits (0-9) cannot be in the first position but everywhere else.

 Identifiers are case-sensitive. For example, message and Message identifiers are
different.

 KEYWORDS

 Keywords are names that have a special meaning to the Dart compiler. All keywords

are reserved identifiers. Therefore, you cannot use them as the names of identifiers.

 Example

else import for if case switch do null

final try get set function continue on var

default void hide with class async static Etc. …

 COMMENTS

Comments help you to document your code. Dart has the following types of comments:

 Single-line comments: begin with //.

 Block comments: begin with /* and end with */.

// The greeting message

String message = 'Welcome to Dart!'; // Single Comment

/* you can write multi
line comment
*/
String message = 'Welcome to Dart!';

DART VARIABLES

 In programming, you need to manage values like numbers, strings, and Booleans. To

store these values in programs, you use variables.

 A variable is an identifier that stores a value of a specific type. By definition, a

variable is associated with a type and has a name.

 The following syntax illustrates how to declare a variable:

type variableName;

DART VARIABLES

 int – represents whole numbers like -1, 0, 1, 2.

 double – represents practical values like -0.5, and 9.98.

 String – represents text such as "Good Morning!".

 bool – represents Boolean values including true and false.

void main() {
int carSpeed = 240;
print('Car Speed = : $carSpeed’); // print(carSpeed);

}

DART VARIABLES

In Dart, all variables are declared public (available to all) by default, but by starting the

variable name with an underscore (_), you can declare it as private. By declaring a

variable private,

Example

 String myname= ‘ abcd ‘ //public

 String _myname= ‘ abcd ‘ //private

DART VARIABLES

 What if the value of a variable doesn’t need to change? Begin the declaration of the

variable with final or const. Use final when the value is assigned at runtime (can be

changed by the user). Use const when the value is known at compile time (in code)

and will not change at runtime.

 final String filter = 'company’;

 const String filter = 'company';

NUMBERS

 Declaring variables as numbers restricts the values to numbers only. Dart allows
numbers to be int (integer) or (double).

 int counter = 0;

 double price = 0.0;

void main() {
//declare a integer value
int num1 = 1;
// declare a double value
double num2 = 1.5;
print(num1);
print(num2);

}

DART CONVERT -1

 To convert an integer into a double,
you use the int.toDouble()

 To convert an double into an
integer, you use the double.toInt()

void main() {
int a = 10;
double b = a.toDouble();

//convert int to Double
print(a); //output 10
print(b); //output 10.0

double c = 4.99;
int d = c.toInt();

//convert Double to int
print(c); //output 4.99
print(d); //output 4

}

DART STRING TYPE

 A string is a sequence of characters or more precisely a sequence of UTF-16 code

units. Dart uses the String type to represent strings.

 To create a string literal, you can use either single quotes or double quotes like this:

void main() {

String s1 = 'A single-quoted string';

String s2 = "A double-quoted string";

}

DART STRING TYPE

 Dart allows you to place a variable in a string using the $variableName syntax.

void main() {

String name = 'Ali';

String message = 'Hello $name';

print(message); // Output = Hello Ali

}

DART STRING TYPE

 To embed an expression in a string, you use the ${expression} syntax. For example

OUTPUT: The price with tax is 10.8

void main() {
var price = 10;
var tax = 0.08;
var message = 'The price with tax is ${price + price * tax}';
print(message);

}

DART STRING TYPE

 Getting the length of a string

 To get the length of a string, you use the length property:

void main() {

var message = 'Hello';

print(message.length); //output = 5

}

DART STRING TYPE

 Accessing individual characters in a string

 To access an individual character in a string, you

can use the square brackets [] with an index:

 String indexing is zero-based. It means that the

first character in the string has an index of 0, the

next is 1, and so on. For example:

void main() {

var message = 'Hello’;

print(message[0]); // H

print(message[1]); // e

print(message[2]); // l

print(message[3]); // l

print(message[4]); // o

}

DART MULTILINE STRINGS

To form a multiline string, you use triple quotes, either single or double quotes. For
example:

void main() {

var sql = '''select phone

from phone_books

where name =?''';

print(sql);

}

Output:

select phone

from phone_books

where name =?

DART CONVERT -2

 To convert a string into an integer, you use the int.parse() method.

 To convert a string to a double, you use the double.parse() method.

void main() {
int qty = 5;
String amount = "100";
int total = qty * int.parse(amount);
print('Total: $total'); //output : Total: 500

String priceStr = "1.55";
double price = double.parse(priceStr);

print(price);//output : 1.55
}

DYNAMIC AND VAR

dynamic: can change TYPE of the variable, & can change VALUE of the

variable later in code. var: can't change TYPE of the variable, but can change

VALUE of the variable later in code.

Dynamic var

Dynamic age=12 Var age= 12

Age=‘abcd’ Age =23
Age =12 Age =‘abcd’

BOOLEANS

 Declaring variables as bool (Boolean) allows a value of true or false to be entered.

bool isDone = false;

isDone = true; void main() {
bool val = true;
print(val);

}

OPERATORS

 Dart language supports all operators, as you are familiar with other programming
languages such as C, Kotlin, and Swift. The operator's name is listed below:

 Arithmetic

 Equality

 Increment and Decrement

 Logical

 Comparison

ARITHMETIC OPERATORS

Operators & Meaning

+ Add

− Subtract

* Multiply

/ Divide

% Get the remainder of an integer division (modulo)

++ Increment

-- Decrement

~/ To get only the integer part

The following table shows the arithmetic operators supported by Dart.

EQUALITY AND RELATIONAL OPERATORS

Relational Operators tests or defines the kind of relationship between two entities.

Relational operators return a Boolean value i.e. true/ false.

Operator Description Example (A=10 , B=20)

> Greater than (A > B) is False

< Lesser than (A < B) is True

>= Greater than or equal to (A >= B) is False

<= Lesser than or equal to (A <= B) is True

== Equality (A==B) is False

!= Not equal (A!=B) is True

LOGICAL OPERATORS

Logical operators are used to combine two or more conditions. Logical operators return

a Boolean value.

Operator Description Example (A=10,B=20)

&&
And − The operator returns true only if all the expressions
specified return true (A > 10 && B > 10) is False.

||
OR − The operator returns true if at least one of the expressions
specified return true (A > 10 || B > 10) is True.

!
NOT − The operator returns the inverse of the expression’s
result. For E.g.: !(7>5) returns false !(A > 10)

CONDITIONAL EXPRESSIONS

Dart has two operators that let you evaluate expressions that might otherwise require ifelse statements −

condition ? expr1 : expr2

If condition is true, then the expression evaluates expr1 (and returns its value); otherwise, it evaluates and

returns the value of expr2.

void main() {
var a = 10;
var res = a > 12 ? "greater than 10":"lesser than or equal to 10";
print(res);

}

DART LANGUAGE
PART-2

DECISION MAKING AND LOOPS

The decision-making is a feature that allows you to evaluate a condition before

the instructions are executed. The Dart language supports the following types of

decision-making statements:

STATEMENTS SELECTION

Dart If is a simple conditional statement where

a block of statements get executed if the given

Boolean expression evaluates to true.

void main() {
bool HaveAcar = true;
if (HaveAcar) {

print(" I Have a BMW ");
print(“models 2011");

}
}

STATEMENTS SELECTION

Dart If-Else statement contains two blocks. If block and Else block.

void main() {
bool HaveAcar = false;
if (HaveAcar) {

print(" I Have a BMW ");
} else {

print("I don\'t have enough money");
}

}

STATEMENTS SELECTION

Dart If-Else-If statement is and extension

to if-else statement. If-Else-If contains

more than one Boolean expression.

STATEMENTS SELECTION

void main() {
String season = "";
String month = "Sep";

if (month == "Jan" || month == "Feb" || month == "March") {
season = "Spring";

} else if (month == "Apr" || month == "Jun" || month == "July") {
season = "Summer";

} else if (month == "Aug" || month == "Sep" || month == "Oct") {
season = "Autumn";

} else if (month == "Nov" || month == "Dec" || month == "Jan") {
season = "Winter";

} else {
season = "this month doesn\'t exist";

}
print(season);

}

STATEMENTS SELECTION

Statement
3

Statement
2

Statement
1Statement

Case
1

Case
3

Case
2

Default

BreakBreak

TrueTrue True

FalseFalse False

Start

Expression

END

The switch statement

evaluates an expression,

matches the expression’s

value to a case clause and

executes the statements

associated with that case.

void main() {
const weather = "cloudy";
switch (weather) {

case "sunny":
print("Its a sunny day. Put sunscreen.");
break;

case "snowy":
print("Stay at Home");
break;

case "cloudy":
case "rainy":

print("Please bring umbrella.");
break;

default:
print("Sorry I am not familiar with such weather.");

}}

STATEMENTS SELECTION

EXAMPLE

void main() {

int a = 13;

if (a % 2 == 0) {

print('$a is even number.');

} else {

print('$a is odd number.');

}

}

void main() {

int a = -12;

if (a < 0) {

print('$a is negative number.');

} else if (a == 0) {

print('$a is zero. Neither negative nor

positive');

} else {

print('$a is positive number.');

}}

EXAMPLE

void main() {
var grade = "A";
switch(grade) {

case "A": { print("Excellent"); }
break;

case "B": { print("Good"); }
break;
case "C": { print("Fair"); }
break;

case "D": { print("Poor"); }
break;

default: { print("Invalid choice"); }
} }

ITERATION STATEMENTS (LOOPS)

The while statement evaluates a Boolean expression and

executes statements repeatedly as long as the result of

the expression is true.

void main() {
int current = 0;

while (current < 5) {
current++;
print(current);

}
}

ITERATION STATEMENTS (LOOPS)

The Dart do while statement executes statements as long as a

condition is true. Here’s the example of the do while

statement:

void main() {
int number = 0; //change number to 6

do {
number++;
print(number);

} while (number < 5);
}

ITERATION STATEMENTS (LOOPS)

Dart for statement executes statements a fixed number

of times. Here’s the syntax of the for statement:

for(initializer; condition; iterator)
{

// statement
}

void main() {
int total = 0;
for (var i = 1; i <= 10; i++) {
total += i;

} print("result is : $total");
}

COLLECTIONS

Dart doesn't support the array to store the data, unlike the other programming

language. We can use the Dart collection in place of array data structure.

Dart collection can be classified as follows:

 List

 Set

 Maps

LIST

A list is an indexable collection of objects with a length. A list may contain duplicate

elements and null. Dart uses the List<E> class to manage lists.

 The following creates an empty list that will store integers:

List scores = [];

List<DataType> scores = [];

you can move the type to the right-hand side:

List scores = <DataType> [];

LIST

void main() {

bool check = true;

List score = [1, 3.14, "text", check];

print(score); //Displaying a list

}

Output: [1,3.14, text, true]

LIST

Accessing elements

Lists are zero-based indexing. It means that the first element has an index of 0, the
second element has an index of 1, and so on.

void main() {

List<String> G_Blood = ["A+", "B+", "O+", "A-", "B-", "O-"];

print(G_Blood[3]);
}

INSERTING ELEMENTS INTO A LIST

 The List.add() function appends the specified value to the end of the List and returns

a modified List object.

 The List.addAll() function accepts multiple values separated by a comma and

appends these to the List.

 The insert() function accepts a value and inserts it at the specified index. Similarly,

the insertAll() function inserts the given list of values, beginning from the index

specified. List.insert(index,value)

List.insertAll(index, iterable_list_of _values)

INSERTING ELEMENTS INTO A LIST

void main() {

List Add_Element = [1, 2, 3];

Add_Element.add(4); //output [1,2,3,4]

Add_Element.addAll([5, 6, 7]); //output [1,2,3,4,5,6,7]

Add_Element.insert(0, 999); //output [999,1,2,3,4,5,6,7]

Add_Element.insertAll(0, [-2, -1]);

print(Add_Element); //output [-2,-1,999,1,2,3,4,5,6,7]

}

UPDATING INDEX IN LIST

 The List class from the dart:core library provides the replaceRange() function to

modify List items. This function replaces the value of the elements within the

specified range.

List.replaceRange(int start_index,int end_index,Iterable <items>)

UPDATING INDEX IN LIST

void main() {
List Update_Element = [1, 2, 3, 4, 5, 6, 7, 8, 9];
print('The value of list before replacing ${Update_Element}');

Update_Element.replaceRange(0, 3, [21, 23, 24]);
print('replacing the items between the range [0-3] is ${Update_Element}');

Update_Element[5] = -1;
print("another ways to update the index ${Update_Element}");

}

REMOVING LIST ITEMS

 List.remove()

The List.remove() function removes the first occurrence of the specified item in the list.
This function returns true if the specified value is removed from the list.

List.remove(value)

void main() {

List remove_Element = [5, 6, 7, 8, 9];

print("Display the list before removing $remove_Element");

remove_Element.remove(7);

print("Display the list After removing $remove_Element");

}

REMOVING LIST ITEMS

 List.removeAt()

The List.removeAt function removes the value at the specified index and returns it.
List.removeAt(int index)

void main() {

List remove_Element = [5, 6, 7, 8, 9];

print("Display the list before removing $remove_Element");

remove_Element.removeAt(2); //error if Index out of Range

print("Display the list After removing $remove_Element");

}

REMOVING LIST ITEMS

 List.removeLast()

The List.removeLast() function pops and returns the last item in the List. The syntax for
the same is as given below

List.removeLast()

void main() {

List remove_Element = [5, 6, 7, 8, 9];

print("Display the list before removing $remove_Element");

remove_Element.removeLast();

print("Display the list After removing $remove_Element");

}

REMOVING LIST ITEMS

 List.removeRange()

The List.removeRange() function removes the items within the specified range.

List.removeRange(int Start , int End)

Start − represents the star ng posi on for removing the items.

End − represents the posi on in the list to stop removing the items.

REMOVING LIST ITEMS

void main() {

List remove_Element = [1, 2, 3, 4, 5, 6, 7, 8, 9];

print('before removing the list element ${remove_Element}');

remove_Element.removeRange(2, 5);

print('after removing the list element between the range 2-5

${remove_Element}');

}

LIST PROPERTIES

 To get the number of elements of a list, you use the List.length property.

 To access the first and last elements of a list, you use the List.first and List.last properties.

 To check if a list contains any elements, you can use the List.isEmpty or List.isNotEmpty

property. That is a Boolean property return true or false.

LIST PROPERTIES

void main() {

List prop = [2, 4, 6, 8, 10];

print(prop.length); // 5

print(prop.first); // 2

print(prop.last); // 10

print(prop.isEmpty); // false

print(prop.isNotEmpty); // true

}

ITERATING OVER LIST ELEMENTS

void main() {
var scores = [1, 3, 4, 2, 5];
for (var i = 0; i < scores.length; i++) {
print(scores[i]);

}
}

void main() {
var scores = [1, 3, 4, 2, 5];
for (var i in scores) {
print(i);

}
}

void main() {
var scores = [1, 3, 4, 2, 5];

scores.forEach((i) => print(i));
}

void main() {
var scores = [1, 3, 4, 2, 5];

scores.forEach(print);

}

SET

A set is a collection of unique elements. Unlike a list, a set doesn’t allow duplicates.

Typically, a set is faster than a list, especially when working with large elements.

Set scores = { };

Set<DataType> scores = { };

Set scores = <DataType> { };

void main() {

Set ratings = {1, 2, 3,4,5,3,6};
print(ratings);
}
//Output:
//1 , 2 , 3 , 4 , 5 , 6

SET

 Getting the number of elements
To find the number of elements of a set, you use the length property.
 Accessing an element by index
Unlike a list, you cannot access an element at an index using square brackets []. Instead, you can
use the elementAt() method
 Also, you can use the first and last property to access the first and last elements respectively.
 Adding an element to a set
To add an element to a set, you use the add() method. For example, the following uses the add()
 Adding multiple elements
To add multiple elements from a list to a set, you use the addAll() method.

SET

 Checking the existence of elements

To check if an element is in a set, you use the contains() method. The contains() method
returns true if a set contains an element. Otherwise, it returns false.

 Finding the intersection of two sets

The intersection of two sets returns a set that contains the elements that are in both sets.

 Finding the union of two sets

The union of two sets returns unique elements that are in both sets.

EXAMPLE

void main() {
Set A = {10, 20, 30,40};

print(A.length); // length of set =4
print(A.elementAt(1));// output = 20
print(A.first);// output = 10
print(A.last);// output = 40
A.addAll([50,60,20]);
print(A);// output = 10,20,30,40,50,60
print(A.contains(30));// true

Set B ={10,20,70,80};
print(A.intersection(B));// output = 10 ,20
print(A.union(B));// output = 10, 20, 30, 40, 50, 60, 70, 80

}

ITERATING OVER ELEMENTS OF A SET

void main() {

var ratings = {1, 2, 3, 4, 5};

for (var i in ratings) {

print(i);

}

}

void main() {

var ratings = {1, 2, 3, 4, 5};

for (var i = 0; i < ratings.length; i++)

{

print(ratings.elementAt(i));

}}

Any Questions

