
Software engineering

Computer Science Department

2nd stage

2023-2024

Lecturer: Wafaa Mustafa Hameed

Cihan University /Sulaymaniya

Software Engineering definition

we can define software engineering as an engineering branch

associated with the development of software product using

well-defined scientific principles, methods and procedures.

The outcome of software engineering is an efficient and

reliable software product.

IEEE defines software engineering as: The application of a

systematic, disciplined, quantifiable approach to the

development, operation and maintenance of software.

2

Software product

3

Software engineering techniques

Software engineering principles use two

important techniques to reduce problem

complexity:

abstraction

decomposition.

4

Abstraction

The principle of abstraction implies that a

problem can be simplified by omitting irrelevant

details. Abstraction is a powerful way of

reducing the complexity of the problem.

5

Decomposition

In this technique, a complex problem is divided into

several smaller problems and then the smaller

problems are solved one by one.

`A good decomposition of a problem should

minimize interactions among various components.

If the different subcomponents are interrelated, then

the different components cannot be solved

separately and the desired reduction in complexity

will not be realized.

6

NEED OF SOFTWARE ENGINEERING
(Why Software Engineering)

The need of software engineering arises because

of higher rate of change in user requirements and

environment on which the software is working.

Large software - It is easier to build a wall than

to a house or building, likewise, as the size of

software become large engineering has to step to

give it a scientific process.

7

Scalability- If the software process were not

based on scientific and engineering concepts, it

would be easier to re-create new software than

to scale an existing one.

Cost- As hardware industry has shown its skills

and huge manufacturing has lower down the

price of computer and electronic hardware. But

the cost of software remains high if proper

process is not adapted.

8

Dynamic Nature- The always growing and adapting

nature of software hugely depends upon the

environment in which the user works. If the nature

of software is always changing, new enhancements

need to be done in the existing one. This is where

software engineering plays a good role.

Quality Management- Better process of software

development provides better and quality software

product.

9

Importance of Software Engineering

10

Importance of Software Engineering:

Reduces complexity: Big software is always

complicated and challenging to progress. Software

engineering has a great solution to reduce the

complication of any project. Software engineering

divides big problems into various small issues. And then

start solving each small issue one by one. All these

small problems are solved independently to each other.

11

To minimize software cost: Software needs a lot of hard

work and software engineers are highly paid experts. A lot

of manpower is required to develop software with a large

number of codes. But in software engineering,

programmers project everything and decrease all those

things that are not needed. In turn, the cost for software

productions becomes less as compared to any software that

does not use software engineering method.

12

To decrease time: Anything that is not made according

to the project always wastes time. And if you are making

great software, then you may need to run many codes to

get the definitive running code. This is a very time-

consuming procedure, and if it is not well handled, then

this can take a lot of time. So if you are making your

software according to the software engineering method,

then it will decrease a lot of time.

13

Handling big projects: Big projects are not done in a

couple of days, and they need lots of patience, planning, and

management. And to invest six and seven months of any

company, it requires heaps of planning, direction, testing,

and maintenance. No one can say that he has given four

months of a company to the task, and the project is still in its

first stage. Because the company has provided many

resources to the plan and it should be completed. So to

handle a big project without any problem, the company has

to go for a software engineering method.

14

Reliable software: Software should be secure,

means if you have delivered the software, then it

should work for at least its given time or

subscription. And if any bugs come in the software,

the company is responsible for solving all these

bugs. Because in software engineering, testing and

maintenance are given, so there is no worry of its

reliability.

15

Effectiveness: Effectiveness comes if anything has

made according to the standards. Software standards are

the big target of companies to make it more effective. So

Software becomes more effective in the act with the help

of software engineering.

16

CHARACTERESTICS OF GOOD SOFTWARE

A software product can be judged by what it offers and how

well it can be used. This software must satisfy on the following

grounds:

Operational

Transitional

Maintenance

17

Operational

This tells us how well software works in operations. It can
be measured on:

Budget

Usability

Efficiency

Correctness

Functionality

Dependability

Security

Safety

18

Transitional

This aspect is important when the software is moved from one platform to

another:

Portability (Portability deals with moving the component from one

environment to another. Example: A game running on Windows XP

is said to be portable if the same game can be run on Windows 7 without

any change in the behavior of the game).

Interoperability (Interoperability is an ability of one system to interact

with another system. This interaction is between 2 different systems or 2

different applications all together. ... Like – MS Word and

Calculator are 2 different application and they perform their expected

behavior independently in the same operating system)

19

Reusability (In computer science and software engineering,

reusability is the use of existing assets in some form within

the software product development process; these assets are

products of the software development life cycle and include

code, software components, test suites, designs and

documentation.)

Adaptability (An adaptable software system can tolerate

changes in its environment without external intervention. For

example, a dual-mode cell phone can find out by itself if any

one of the two wireless standards it supports is available at

its current location and if so it starts using that standard.)

20

Maintenance

This aspect briefs about how well a software has the

capabilities to maintain itself in the ever-changing environment:

Modularity (Software modularity is the decomposition of a

program into smaller programs with standardized interfaces.)

Maintainability (Maintainability is defined as the probability

of performing a successful repair action within a given time. ...

For example, if it is said that a particular component has

a 90% maintainability for one hour, this means that there is a

90% probability that the component will be repaired within an

hour.)

21

Flexibility It creates new opportunities: Flexible software frees

businesses from hardware and software restrictions of the

past. For instance, suppose a business needs an industrial

scanner to scan new inventory into their system. Older software

might limit that company's options to one or two expensive,

industrial scanners.

Scalability For example, an application program would be

scalable if it could be moved from a smaller to a larger

operating system and take full advantage of the larger operating

system in terms of performance and the larger number of users

that could be handled.

22

In short, Software engineering is a branch of computer

science, which uses well-defined engineering concepts

required to produce efficient, durable, scalable, in-budget

and on-time software products

23

Software Applications

No clear breakdown of application types, following are some generally
accepted overlapping categories

System software

It is a software designed to provide a platform for other software.

Examples of system software include operating systems like

macOS, Linux, Android and Microsoft Windows, computational

science software, game engines, search engines, industrial

automation, and software as a service applications.

Real-time software

Videoconference applications.

Online gaming.

Some e-commerce transactions.

Chatting.

24

Business information software

word processing programs.

accounts software.

billing software.

payroll software.

database software.

asset management software.

Engineering & scientific software

This software satisfies the needs of a scientific or engineering
user to perform specific tasks. Such software is written for
specific applications using principles, techniques, and formulae
specific to that field. Examples are software like MATLAB,
AUTOCAD, ORCAD, etc.

25

Embedded software

Image processing systems found in medical imaging
equipment.

Fly-by-wire control systems found in aircraft.

Motion detection systems in security cameras.

Traffic control systems found in traffic lights.

Timing and automation systems found in smart home devices.

26

Personal application software

Microsoft suite of products (Office, Excel, Word,

PowerPoint, Outlook, etc.)

Internet browsers like Firefox, Safari, and Chrome.

Mobile pieces of software such as Pandora (for music

appreciation), Skype (for real-time online communication),

and Slack (for team collaboration)

27

Communication software

The best defined examples of communication software

are file transfer protocol (FTP), messaging software

(Skype, Messenge, whatsup) and email.

28

Software Processes

The term software specifies to the set of computer programs, procedures

and associated documents (Flowcharts, manuals, etc.) that describe the

program and how they are to be used.

• A software process is the set of activities and associated outcome that

produce a software product.

29

Software engineers mostly carry out these activities. These are

four key process activities, which are common to all software

processes. These activities are:

Software specifications: The functionality of the software

and constraints on its operation must be defined.

Software development: The software must be produced.

to meet the requirement

Software validation: The software must be validated to

ensure that it does what the customer wants.

Software evolution: The software must evolve to meet

changing client needs.

30

The Software Process Model

A software process model is an abstraction of the actual

process. It can also be defined as

a simplified representation of a software process. Each model

represents a process from a specific perspective.

Process models may contain activities, which are part of the

software process, software product, and the roles of people

involved in software engineering.

31

Some examples of the types of software process models

that may be produced

1. A workflow model: This shows the series of activities in

the process along with their inputs, outputs and dependencies.

The activities in this model perform human actions.

32

2. A dataflow or activity model: This represents the process as a set of

activities, each of which carries out some data transformations. It shows

how the input to the process, such as a specification is converted to an

output such as a design. The activities here may be at a lower level than

activities in a workflow model. They may perform transformations carried

out by people or by computers.

33

3. A role/action model: This means the roles of the

people involved in the software process and the

activities for which they are responsible.

34

Why we need software Process?

Common understanding of the activities, resources and

constraints involved in software development.

Creating processes helps

 Find inconsistencies,

 Redundancies; and

 Omissions

35

Software Crisis

Size: Software is becoming more expensive and more complex with the

growing complexity and expectation out of software. For example, the

code in the consumer product is doubling every couple of years.

Quality: Many software products have poor quality, i.e., the software

products defects after putting into use due to ineffective testing

technique. For example, Software testing typically finds 25 errors per

1000 lines of code.

Cost: Software development is costly i.e. in terms of time taken to

develop and the money involved

Delayed Delivery: Serious schedule overruns are common. Very often

the software takes longer than the estimated time to develop, which in

turn leads to cost shooting up. For example, one in four large-scale

development projects is never completed.

36

Requirement Engineering

Requirements engineering (RE) refers to the process of

defining, documenting, and maintaining requirements in the

engineering design process. Requirement engineering

provides the appropriate mechanism to understand what the

customer desires, analyzing the need, and assessing

feasibility, negotiating a reasonable solution, specifying the

solution clearly, validating the specifications and managing

the requirements as they are transformed into a working

system.

Thus, requirement engineering is the disciplined application

of proven principles, methods, tools, and notation to describe

a proposed system's intended behavior and its associated

constraints.
37

Requirement Engineering Process

It is a five-step process, which includes –

Feasibility Study

Requirement Elicitation and Analysis

Software Requirement Specification

Software Requirement Validation

Software Requirement Management

38

39

1. Feasibility study

The main aim of feasibility study is to determine whether it would

be financially and technically feasible to develop the product.

At first project managers or team leaders try to have a rough

understanding of what is required to be done by visiting the client

side. They study different input data to the system and output data

to be produced by the system. They study what kind of processing

is needed to be done on these data and they look at the various

constraints on the behavior of the system.

The objective behind the feasibility study is to create the reasons

for developing the software that is acceptable to users, flexible to

change and conformable to established standards.

40

After they have an overall understanding of the problem they

investigate the different solutions that are possible. Then

they examine each of the solutions in terms of what kind of

resources required, what would be the cost of development

and what would be the development time for each solution.

Based on this analysis they pick the best solution and

determine whether the solution is feasible financially and

technically. They check whether the customer budget would

meet the cost of the product and whether they have sufficient

technical expertise in the area of development.

41

Types of Feasibility:

Technical Feasibility - Technical feasibility evaluates the

current technologies, which are needed to accomplish

customer requirements within the time and budget.

Operational Feasibility - Operational feasibility assesses

the range in which the required software performs a series of

levels to solve business problems and customer

requirements.

Economic Feasibility - Economic feasibility decides

whether the necessary software can generate financial profits

for an organization.

42

2. Requirement Elicitation and Analysis:

This is also known as the gathering of requirements. Here,

requirements are identified with the help of customers and

existing systems processes, if available.

Analysis of requirements starts with requirement elicitation.

The requirements are analyzed to identify inconsistencies,

defects, omission, etc. analystes describe requirements in

terms of relationships and also resolve conflicts if any.

43

The goal of the requirements gathering activity is to

collect all relevant information from the customer

regarding the product to be developed. This is done to

clearly understand the customer requirements so that

incompleteness and inconsistencies are removed.

After all ambiguities, inconsistencies, and

incompleteness have been resolved and all the

requirements properly understood, the requirements

specification activity can start. During this activity, the

user requirements are systematically organized into a

Software Requirements Specification (SRS) document.

44

How to write a good SRS for your Project

What is SRS?

A software requirements specification (SRS) is a description of a

software system to be developed.

It lays out functional and non-functional requirements and may

include a set of use cases that describe user interactions that the

software must provide.

Why SRS?

In order to fully understand one’s project, it is very important

that they come up with an SRS listing out their requirements,

how are they going to meet them and how will they complete the

project. It helps the team to save upon their time as they are able

to comprehend how are going to go about the project. Doing this

also enables the team to find out about the limitations and risks

early on.

45

Requirements specification

The customer requirements identified during the

requirements gathering and analysis activity are

organized into a SRS document. The important

components of this document are functional

requirements, the nonfunctional requirements, and the

goals of implementation.

46

Problems of Elicitation and Analysis

Getting all, while only, the right people should be

involved.

Stakeholders often don't know what they want.

Stakeholders express requirements in their terms.

Stakeholders may have conflicting requirements.

Requirement change during the analysis process.

Organizational and political factors may influence

system requirements.

47

3. Software Requirement Specification:

Software requirement specification is a kind of

document which is created by a software analyst after

the requirements collected from the various sources .

the requirement received by the customer written in

ordinary language. It is the job of the analyst to write the

requirement in technical language so that they can be

understood and beneficial by the development team.

48

The models used at this stage include ER diagrams, data

flow diagrams (DFDs), function decomposition diagrams

(FDDs), data dictionaries.

Data Flow Diagrams: Data Flow Diagrams (DFDs) are

used widely for modeling the requirements.

DFD shows the flow of data through a system.

The system may be a company, an organization, a set of

procedures, a computer hardware system, a software

system, or any combination of the preceding.

The DFD is also known as a data flow graph or bubble

chart.

49

Data Flow Diagrams

50

Data Dictionaries: Data Dictionaries are simply

repositories to store information about all data items

defined in DFDs.

At the requirements stage, the data dictionary should at

least define customer data items, to ensure that the

customer and developers use the same definition and

terminologies.

51

52

Entity-Relationship Diagrams: Another tool for

requirement specification is the entity-relationship

diagram, often called an "E-R diagram."

It is a detailed logical representation of the data for the

organization and uses three main constructs i.e. data

entities, relationships, and their associated attributes.

53

54

Functional Decomposition Diagram (FDD) is a business

planning tool that depicts the hierarchy of business

functions, processes, and sub processes within an

organization that are later described in detail using process

models

55

Prerequisite of Software requirements

Collection of software requirements is the basis of the

entire software development project. A complete

Software Requirement Specifications should be:

56

• Clear
• Correct
• Consistent
• Coherent
• Comprehensible
• Modifiable
• Verifiable

• Prioritized
• Unambiguous
• Traceable
• Credible source

Software Requirements: Largely software requirements must be

categorized into two categories:

Functional Requirements: Functional requirements define a function

that a system or system element must be qualified to perform and must

be documented in different forms. The functional requirements are

describing the behavior of the system as it correlates to the system's

functionality.

Functional requirements define the basic system behavior. Essentially,

they are what the system does or must not do, and can be thought of in

terms of how the system responds to inputs. Functional requirements

usually define if/then behaviors and include calculations, data input, and

business processes.

57

Non-functional Requirements: This can be the

necessities that specify the criteria that can be used to

decide the operation instead of specific behaviors of the

system.

Nonfunctional Requirements (NFRs) define system

attributes. They serve as constraints or restrictions on

the design of the system across the different backlogs.

58

Non-functional requirements are divided into two main

categories:

Execution qualities like security and usability, which are

observable at run time.

Evolution qualities like testability, maintainability,

extensibility, and scalability that embodied in the static

structure of the software system.

59

4. Software Requirement Validation:

After requirement specifications developed, the requirements
discussed in this document are validated. The user might
demand illegal, impossible solution or experts may
misinterpret the needs.

In the requirements validation process, different type of test
to check the requirements mentioned need to perform :-

If they can practically implement

If they are correct and as per the functionality and specially
of software

If there are any ambiguities

If they can describe all the requirements clearly.

A software requirements specification (SRS) can be

use to implement the validity .

60

Requirements Validation Techniques:

Requirements reviews/inspections: systematic manual

analysis of the requirements.

Prototyping: Using an executable model of the system to

check requirements.

Test-case generation: Developing tests for requirements to

check testability.(Customer is responsible for acceptance

testing.)

Automated consistency analysis: checking for the consistency

of structured requirements descriptions; for automatic detection

of errors, such as type errors, nun determinism, missing cases,

and circular definitions, in requirements specifications. .

61

LIFE CYCLE MODEL

A software life cycle model (also called process model)

is a descriptive and diagrammatic representation of the

software life cycle. A life cycle model represents all the

activities required to make a software product transit

through its life cycle phases. It also captures the order in

which these activities are to be undertaken.

62

Different software life cycle models

Many life cycle models have been proposed so far. Each of

them has some advantages as well as some disadvantages. A

few important and commonly used life cycle models are as

follows:

Classical Waterfall Model

Iterative Waterfall Model

Prototyping Model

Evolutionary Model

Spiral Model

63

1.CLASSICAL WATERFALL MODEL

64

The classical waterfall model is the most obvious way to

develop software. Though the classical waterfall model

is elegant and intuitively obvious, it is not a practical

model in the sense that it cannot be used in actual

software development projects. Thus, this model can be

considered to be a theoretical way of developing

software. But all other life cycle models are essentially

derived from the classical waterfall model. So, in order

to be able to appreciate other life cycle models it is

necessary to learn the classical waterfall model.

65

The classical waterfall model is an idealistic one since it

assumes that no development error is ever committed by

the engineers during any of the life cycle phases.

The source of the defects can be many: oversight, wrong

assumptions, use of inappropriate technology,

communication gap among the project engineers, etc.

66

These defects usually get detected much later in the life

cycle. For example, a design defect might go unnoticed

till we reach the coding or testing phase. Once a defect

is detected, the engineers need to go back to the phase

where the defect had occurred and redo some of the

work done during that phase and the subsequent phases

to correct the defect and its effect on the later phases.

67

2. ITERATIVE WATERFALL MODEL

68

Iterative waterfall model provide feedback paths for

error correction as when detected later in a phase.

Though errors are inevitable, but it is desirable to detect

them in the same phase in which they occur. If so, this

can reduce the effort to correct the bug.

69

Advantages and disadvantages of
iterative waterfall model

The advantage of this model is that there is a working model

of the system at a very early stage of development which

makes it easier to find functional or design flaws. Finding

issues at an early stage of development enables to take

corrective measures in a limited budget.

The disadvantage with this SDLC (software development

life cycle model is that it is applicable only to large and

bulky software development projects. This is because it is

hard to break a small software system into further small

serviceable increments/modules.

70

3. PRTOTYPING MODEL

71

A prototype is a toy implementation of the system.

A prototype usually exhibits limited functional

capabilities,

low reliability, and inefficient performance compared

to the actual software.

A prototype is usually built using several shortcuts.

The shortcuts might involve using inefficient, inaccurate,

or dummy functions. The shortcut implementation of a

function, for example, may produce the desired results by

using a table look-up instead of performing the actual

computations. A prototype usually turns out to be a very

crude version of the actual system.

72

Need for a prototype in software
development

An important purpose is to illustrate the input data

formats, messages, reports, and the interactive dialogues

to the customer. This is a valuable mechanism for

gaining better understanding of the customer’s needs:

how the screens might look like

how the user interface would behave

how the system would produce outputs

73

Another reason for developing a prototype is that it is

impossible to get the perfect product in the first attempt.

Many researchers and engineers advocate that if you

want to develop a good product you must plan to throw

away the first version. The experience gained in

developing the prototype can be used to develop the

final product.

A prototyping model can be used when technical

solutions are unclear to the development team.

74

A developed prototype can help engineers to critically

examine the technical issues associated with the product

development. Often, major design decisions depend on

issues like the response time of a hardware controller, or

the efficiency of a sorting algorithm, etc. In such

circumstances, a prototype may be the best or the only

way to resolve the technical issues.

A prototype of the actual product is preferred in

situations such as:

• User requirements are not complete

• Technical issues are not clear

75

4. EVOLUTIONARY MODEL

It is also called successive versions model or incremental

model. At first, a simple working model is built.

Subsequently it undergoes functional improvements & we

keep on adding new functions till the desired system is built.

76

EVOLUTIONARY MODEL

77

EVOLUTIONARY MODEL APPLICATIONS

Large projects where you can easily find modules for

incremental implementation. Often used when the

customer wants to start using the core features rather

than waiting for the full software.

Also used in object oriented software development

because the system can be easily portioned into units in

terms of objects.

78

Advantages and disadvantages of
EVOLUTIONARY MODEL

Advantages:

User gets a chance to experiment partially developed

system

Reduce the error because the core modules get tested

thoroughly.

Disadvantages:

It is difficult to divide the problem into several versions

that would be acceptable to the customer which can be

incrementally implemented & delivered.

79

5.SPIRAL MODEL

The diagrammatic representation of this model appears like a

spiral with many loops. The exact number of loops in the

spiral is not fixed. Each loop of the spiral represents a phase

of the software process.

For example, the inner most loop might be concerned with

feasibility study, the next loop with requirements

specification, the next one with design, and so on. Each

phase in this model is split into four sectors (or quadrants)

80

SPIRAL MODEL

81

ACTIVITIES CARRIED OUT DURING EACH PHASE OF
A SPIRAL MODEL.

First quadrant (Objective Setting)

During the first quadrant, it is needed to identify the

objectives of the phase.

Examine the risks associated with these objectives.

Second Quadrant (Risk Assessment and Reduction)

A detailed analysis is carried out for each identified

project risk.

Steps are taken to reduce the risks. For example, if there

is a risk that the requirements are inappropriate, a

prototype system may be developed.

82

Third Quadrant (Development and Validation)

Develop and validate the next level of the product after

resolving the identified risks.

Fourth Quadrant (Review and Planning)

Review the results achieved so far with the customer

and plan the next iteration around the spiral.

Progressively more complete version of the software gets

built with each iteration around the spiral.

83

Circumstances to use spiral model

The spiral model is called a meta model since it encompasses

all other life cycle models. Risk handling is inherently built

into this model. The spiral model is suitable for development

of technically challenging software products that are prone to

several kinds of risks. However, this model is much more

complex than the other models – this is probably a factor

deterring its use in ordinary projects.

84

Comparison of different life-cycle models

The classical waterfall model can be considered as the basic

model and all other life cycle models as embellishments of

this model. However, the classical waterfall model cannot be

used in practical development projects, since this model

supports no mechanism to handle the errors committed

during any of the phases.

85

This problem is overcome in the iterative waterfall

model. The iterative waterfall model is probably the

most widely used software development model evolved

so far. This model is simple to understand and use.

However this model is suitable only for well-understood

problems; it is not suitable for very large projects and

for projects that are subject to many risks

The prototyping model is suitable for projects for which

either the user requirements or the underlying technical

aspects are not well understood. This model is especially

popular for development of the user-interface part of the

projects.

86

The evolutionary approach is suitable for large problems

which can be decomposed into a set of modules for

incremental development and delivery. This model is

also widely used for object-oriented development

projects. Of course, this model can only be used if the

incremental delivery of the system is acceptable to the

customer.

87

The spiral model is called a meta model since it

encompasses all other life cycle models. Risk handling

is inherently built into this model. The spiral model is

suitable for development of technically challenging

software products that are prone to several kinds of

risks. However, this model is much more complex than

the other models – this is probably a factor deterring its

use in ordinary projects.

88

Design:

The goal of the design phase is to transform the requirements

specified in the SRS document into a structure that is

suitable for implementation in some programming language.

In technical terms, during the design phase the software

architecture is derived from the SRS document.

Two distinctly different approaches are available:

The traditional design approach

Object-oriented design approach.

89

A Software Requirements Specification (SRS)

is a document that describes the nature of a project,

software or application. In simple words, SRS document is a

manual of a project provided, it is prepared before you kick-start a

project/application.

This document is also known by the names SRS report, software

document.

90

1.Traditional design approach

Traditional design consists of two different
activities;

first a structured analysis of the requirements
specification is carried out where the detailed
structure of the problem is examined. This is
followed by

a structured design activity, During structured
design, the results of structured analysis are
transformed into the software design.

91

2. Object-oriented design approach

In this technique, various objects that occur in the

problem domain and the solution domain are first

identified, and the different relationships that exist

among these objects are identified. The object structure

is further refined to obtain the detailed design.

92

Coding and unit testing

The purpose of the coding phase (sometimes called the

implementation phase) of software development is to

translate the software design into source code.

Each component of the design is implemented as a

program module. The end-product of this phase is a set

of program modules that have been individually tested.

During this phase, each module is unit tested to

determine the correct working of all the individual

modules. It involves testing each module in isolation as

this is the most efficient way to debug the errors

identified at this stage.

93

Integration and system testing

Integration of different modules is undertaken once they

have been coded and unit tested.

During the integration and system testing phase, the

modules are integrated in a planned manner. The

different modules making up a software product are

almost never integrated in one shot.

Integration is normally carried out incrementally over a

number of steps. During each integration step, the

partially integrated system is tested and a set of

previously planned modules are added to it.

Finally, when all the modules have been successfully

integrated and tested, system testing is carried out. The

goal of system testing is to ensure that the developed

system conforms to its requirements laid out in the SRS

94

System Testing Stages

System testing usually consists of three different kinds of testing activities:

α – testing(unit testing): It is the system testing performed by the
development team, Individual components are tested independently;
Components may be functions or objects or coherent groupings of
these entities.

β –testing(system testing): It is the system testing performed by a

friendly set of customers. Testing of the system as a whole, Testing

of emergent properties is particularly important.

Acceptance testing: It is the system testing performed by the customer

himself after the product delivery to determine whether to accept or

reject the delivered product.

95

Maintenance:

Maintenance of a typical software product requires much

more than the effort necessary to develop the product itself.

Many studies carried out in the past confirm this and indicate

that the relative effort of development of a typical software

product to its maintenance effort is roughly in the 40:60

ratios

96

Maintenance Activities

Maintenance involves performing any one or more of the

following three kinds of activities:

Correcting errors that were not discovered during the product

development phase. This is called corrective maintenance.

Improving the implementation of the system, and enhancing

the functionalities of the system according to the customer’s

requirements. This is called perfective maintenance.

Porting the software to work in a new environment. For

example, porting may be required to get the software to work

on a new computer platform or with a new operating system.

This is called adaptive maintenance.

97

Software reuse

98

Introduction of Software Reuse

 Software reuse is the process of creating software systems from

existing software rather than building software systems from

scratch.

 Something that was originally written for a different project and

implementation will usually be recognized as reuse.

 Code reuse is the idea that a partial or complete computer

program written at one time can be used in another program

written at a later time.

 The reuse of programming code is a common technique which

attempts to save time and energy by reducing redundant work.

99

Why Software Reuse

 A good software reuse process facilitates the increase of

productivity, quality, and reliability, performance and decrease

of costs, effort, risk and implementation time.

 An initial investment is required to start a software reuse

process, but that investment pays for itself in a few reuses.

100

Software reuse

 In most engineering disciplines, systems are designed by

composing existing components that have been used in other

systems.

 Software engineering has been more focused on original

development but it is now recognized that to achieve better

software, more quickly and at lower cost, we need to adopt a

design process that is based on systematic software reuse.

101

Reuse-based software engineering

 Application system reuse

The whole of an application system may be reused either by

incorporating it without change into other systems (COTS

reuse) or by developing application families.

 Component reuse

Components of an application from sub-systems to single

objects may be reused.

 Object and function reuse

Software components that implement a single well-defined

object or function may be reused.

102

Benefits

Increased dependability

Reduced process risk

Standards compliance

Accelerated development

103

Problems

Increased maintenance costs

Lack of tool support

Not-invented-here syndrome

Finding, understanding and Adapting reusable components

104

Reuse planning factors

The development schedule for the software.

The expected software lifetime.

The background, skills and experience of the development

team.

The criticality of the software and its non-functional

requirements.

The application domain.

The execution platform for the software.

105

Concept reuse

When you reuse program or design components, you have to

follow the Design decisions made by the original developer of

the component.

This may limit the opportunities for reuse.

However, a more abstract form of reuse is concept reuse when

a Particular approach is described in an implementation

independent way And an implementation is then developed.

The two main approaches to concept reuse are:

 Design patterns

 Generative programming

106

107

