
2ND SATGE
A S S I S T L E C T U R E R : A S A N B A K E R

cihan university/ sulaimaniyah

Data structures with C++

Data structures

cihan university/ sulaimaniyah

 Data Structure is a way of collecting and organizing
data in such a way that we can perform operations
on these data in an effective way. Data Structures
is about rendering data elements in terms of some
relationship, for better organization and storage.

Basic types of data structures

cihan university/ sulaimaniyah

 Anything that can store data can be called as a data
structure, hence Integer, Float, Boolean, Char etc, all are
data structures. They are known as Primitive Data
Structures.

 Then we also have some complex Data Structures, which
are used to store large and connected data. Some
example of Non-Primitive Data Structures are :
 Array

 Linked List

 Tree

 Graph

 Stack, Queue etc.

Diagram of types of data structures

cihan university/ sulaimaniyah

ALGORITHMS

cihan university/ sulaimaniyah

 Definition: An Algorithm is a method of
representing the step-by-step procedure for solving
a problem. It is a method of finding the right
answer to a problem by breaking the problem into
simple cases.

 An algorithm can be written in English like
sentences or in any standard representations. The
algorithm written in English language is called
Pseudo code.

Algorithm must possess the following properties:

cihan university/ sulaimaniyah

 1. Finiteness: An algorithm should terminate in a finite
number of steps.

 2. Definiteness: Each step of the algorithm must be
precisely (clearly) stated.

 3. Effectiveness: Each step must be effective. i.e.; it
should be easily convertible into program statement and
can be performed exactly in a finite amount of time.

 4. Generality: Algorithm should be complete in itself, so
that it can be used to solve all problems of given type for
any input data.

 5. Input/output: Each algorithm must take zero, one or
more quantities as input data and gives one of more
output values.

cihan university/ sulaimaniyah

 Example: To find the average of 3 numbers, the
algorithm is as shown below.

 Step1: Read the numbers a, b, c, and d.

 Step2: Compute the sum of a, b, and c.

 Step3: Divide the sum by 3.

 Step4: Store the result in variable of d.

 Step5: End the program.

Development Of An Algorithm

cihan university/ sulaimaniyah

The steps involved in the development of an algorithm
are as follows:

 Specifying the problem statement.

 Designing an algorithm.

 Coding.

 Debugging

 Testing and Validating

 Documentation and Maintenance.

PERFORMANCE ANALYSIS

cihan university/ sulaimaniyah

 When several algorithms can be designed for the
solution of a problem, there arises the need to
determine which among them is the best. The
efficiency of a program or an algorithm is measured
by computing its time and/or space complexities

cihan university/ sulaimaniyah

 The time complexity of an algorithm is a function of
the running time of the algorithm.

 The space complexity is a function of the space
required by it to run to completion.

 The time complexity is therefore given in terms of
frequency count.

 Frequency count is basically a count denoting
number of times a statement execution

Best Case, Worst Case and Average Case Analysis

cihan university/ sulaimaniyah

 If an algorithm takes minimum amount of time to
run to completion for a specific set of input then it is
called best case complexity.

 If an algorithm takes maximum amount of time to
run to completion for a specific set of input then it is
called worst case time complexity.

 The time complexity that we get for certain set of
inputs is as an average same. Then for corresponding
input such a time complexity is called average case
time complexity.

Arrays

cihan university/ sulaimaniyah

 An array is a series of elements of the same type placed
in contiguous memory locations that can be individually
referenced by adding an index to a unique identifier.

That means that, for example, five values of type int can
be declared as an array without having to declare 5
different variables (each with its own identifier).
Instead, using an array, the five int values are stored in
contiguous memory locations, and all five can be
accessed using the same identifier, with the proper
index.

One-Dimensional Arrays

cihan university/ sulaimaniyah

 A one-dimensional array is a list of related variables.
The general form of a onedimensional array
declaration is

typevar name[size];

 Here, type declares the base type of the array. The
base type determines the data type of each element
that comprises the array(such as int, float...). size
defines how many elements the array will hold. For
example, the following declares an integer array
named sample that is ten elements long:

int sample[10]; An index identifies a specific
element within an array.

cihan university/ sulaimaniyah

 An other example, an array containing 5 integer values of
type int called foo could be represented as:

 int foo [5];

 where each blank panel represents an element of the array. In this
case, these are values of type int. These elements are numbered
from 0 to 4, being 0 the first and 4 the last; In C++, the first element
in an array is always numbered with a zero (not a one), no matter its
length.

Initializing arrays

cihan university/ sulaimaniyah

 the elements in an array can be explicitly initialized
to specific values when it is declared, by enclosing
those initial values in braces {}. For example:

 int foo [5] = { 16, 2, 77, 40, 12071 };

 This statement declares an array that can be
represented like this:

cihan university/ sulaimaniyah

 The number of values between braces {} shall not be greater than
the number of elements in the array. For example, in the
example above, foo was declared having 5 elements (as specified
by the number enclosed in square brackets, [], and the
braces {} contained exactly 5 values, one for each element.

 If declared with less, the remaining elements are set to their
default values (which for fundamental types, means they are
filled with zeroes). For example:

 int bar [5] = { 10, 20, 30 };
Will create an array like this:

cihan university/ sulaimaniyah

 The initializer can even have no values, just the
braces:

int baz [5] = { };

This creates an array of five int values, each initialized with a
value of zero:

cihan university/ sulaimaniyah

 When an initialization of values is provided for an array,
C++ allows the possibility of leaving the square brackets
empty[]. In this case, the compiler will assume
automatically a size for the array that matches the number
of values included between the braces {}:

 int foo [] = { 16, 2, 77, 40, 12071 };

 After this declaration, array foo would be 5 int long, since
we have provided 5 initialization values.

Accessing the values of an array

cihan university/ sulaimaniyah

 In C++, all arrays consist of contiguous memory
locations. (That is, the array elements reside next to each
other in memory.) The lowest address corresponds to the
first element, and the highest address to the last element.
For example, after this fragment is run,
int i[7];
int j;
for(j=0; j<7; j++) i[j] = j;

 i looks like this:

 For a one-dimensional array, the total size of an array in
bytes is computed as shown here:

 total bytes = number of bytes in type × number of
elements

Accessing the values of an array

cihan university/ sulaimaniyah

 The values of any of the elements in an array can be
accessed just like the value of a regular variable of the same
type. The syntax is:

name[index]

Following the previous examples in which foo had 5
elements and each of those elements was of type int, the
name which can be used to refer to each element is the
following:

cihan university/ sulaimaniyah

 For example, the following statement stores the value 77
in the third element of foo:

 foo [2] = 77;

and, for example, the following copies the value of the third
element of foo to a variable called x:

 x = foo[2];

Therefore, the expression foo[2] is itself a variable of
type int.

cihan university/ sulaimaniyah

 Do not confuse these two possible uses of
brackets [] with arrays.

int foo[5]; // declaration of a new array

foo[2] = 77; // access to an element of the array.

The main difference is that the declaration is
preceded by the type of the elements, while the
access is not.

cihan university/ sulaimaniyah

#include <iostream>

using namespace std;

int main()

{

int sample[10]; // this reserves 10 integer elements

int t;

// load the array

for(t=0; t<10; ++t) sample[t]=t;

// display the array

for(t=0; t<10; ++t) cout << sample[t] << ' ';

system("pause");

return 0;

}

Array example

cihan university/ sulaimaniyah

// arrays example

#include <iostream>

using namespace std;

int foo [] = {16, 2, 77, 40, 12071};

int n, result=0;

int main ()

{

 for (n=0 ; n<5 ; ++n)

 {

 result += foo[n];

 }

 cout << result;

 system("pause");

 return 0;

}

Take Inputs from User and Store Them in an Array

cihan university/ sulaimaniyah

#include <iostream>

using namespace std;

int main() {

 int numbers[5];

 cout << "Enter 5 numbers: " << endl;

 // store input from user to array

 for (int i = 0; i < 5; ++i) {

 cin >> numbers[i];

 }

 cout << "The numbers are: ";

 // print array elements

 for (int n = 0; n < 5; ++n) {

 cout << numbers[n] << " ";

 }

system("pause");

 return 0;

}

Character sequences(strigs)

cihan university/ sulaimaniyah

 By far, the most common use for one-dimensional arrays is
to create character strings. In C++, a string is defined as a
character array that is terminated by a null. A null
character is specified using '\0', BackSlash and is zero.
Because of the null terminator, it is necessary to declare a
character array to be one character longer than the largest
string that it will hold.

 For example, if you want to declare an array str that could
hold a 10-character string, you would write:

char str[11];

Specifying the size as 11 makes room for the null at
the end of the string. A string is a null-terminated

character array.

cihan university/ sulaimaniyah

 As you learned earlier, C++ allows you to define a string
literal. Recall that a string literal is a list of characters
enclosed in double quotes. Here are some examples:
"hello there" "I like C++"
"#$%@@#$" ""

 The last string shown is "". This is called a null string. It
contains only the null terminator, and no other
characters. Null strings are useful because they represent
the empty string.

 It is not necessary to manually add the null onto the end
of string constants; the C++ compiler does this for you
automatically. Therefore, the string "Hello" will appear in

cihan university/ sulaimaniyah

char foo [20];

 is an array that can store up to 20 elements of type char.
It can be represented as:

Therefore, this array has a capacity to store sequences of
up to 20 characters. But this capacity does not need to be
fully exhausted: the array can also accommodate shorter
sequences. For example, at some point in a program,
either the sequence "Hello" or the sequence "Merry
Christmas" can be stored in foo, since both would fit in a
sequence with a capacity for 20 characters.

cihan university/ sulaimaniyah

 By convention, the end of strings represented in character
sequences is signaled by a special character: the null character,
whose literal value can be written as '\0' (backslash, zero).

In this case, the array of 20 elements of type char called foo can be
represented storing the character sequences "Hello"and "Merry
Christmas" as:

Notice how after the content of the string itself, a null character
('\0') has been added in order to indicate the end of the sequence.
The panels in gray color represent char elements with undetermined
values.

Initialization of null-terminated character
sequences

cihan university/ sulaimaniyah

 Because arrays of characters are ordinary arrays,
they follow the same rules as these. For example, to
initialize an array of characters with some
predetermined sequence of characters, we can do it
just like any other
array:

char myword[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

cihan university/ sulaimaniyah

 The previous declares an array of 6 elements of
type char initialized with the characters that form the
word "Hello" plus anull character '\0' at the end.

As mentioned previously arrays of character elements
have another way to be initialized: using string literals
directly.

string literals have already shown up several times. These
are specified by enclosing the text between double quotes
("). For example:

"the result is: "

cihan university/ sulaimaniyah

 Sequences of characters enclosed in double-quotes (")
are literal constants. And their type is, in fact, a null-
terminated array of characters. This means that string
literals always have a null character ('\0') automatically
appended at the end.

Therefore, the array of char elements called myword can
be initialized with a null-terminated sequence of
characters by either one of these two statements:

 char myword[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

 char myword[] = "Hello";

cihan university/ sulaimaniyah

 In both cases, the array of characters myword is
declared with a size of 6 elements of type char: the 5
characters that compose the word "Hello", plus a
final null character ('\0'), which specifies the end of
the sequence and that, in the second case, when
using double quotes (") it is appended automatically.

NULL-TERMINATED

char array1[10] = {‘c’,’u’,’p’};

char array2[10] = “cup”;

c u p ? ? ? ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

c u p \0 ? ? ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

Reading a String from the Keyboard

cihan university/ sulaimaniyah

 The easiest way to read a string entered from the keyboard is to make
the array that will receive the string the target of a cin statement. For
example, the following program reads a string entered by the user:

// Using cin to read a string from the keyboard.

#include <iostream>

using namespace std;

int main()

{

char str[80];

cout << "Enter a string: ";

cin >> str; // read string from keyboard

cout << "Here is your string: ";

cout << str;

System("pause");

return 0;

}

cihan university/ sulaimaniyah

 Although this program is technically correct, there is
still a problem. To see what it is, examine the
following sample run.

Enter a string: This is a test

Here is your string: This

 As you can see, when the program redisplays the
string, it shows only the word "This", not the entire
sentence that was entered. The reason for this is that
the >> operator stops reading a string when the first
whitespace character is encountered. Whitespace
characters include spaces, tabs, and newlines

cihan university/ sulaimaniyah

 One way to solve the whitespace problem is to use
another of C++’s library functions, gets(). The general
form of a gets() call is:

gets(array-name);

 If you need your program to read a string, call gets()
with the name of the array, without any index, as its
argument. Upon return from gets(), the array will hold
the string input from the keyboard. The gets() function
will continue to read characters until you press ENTER.
The header used by gets() is <cstdio>.

 This version of the preceding program uses gets() to

 allow the entry of strings containing spaces.

cihan university/ sulaimaniyah

// Using gets() to read a string from the keyboard.

#include <iostream>

#include <cstdio>

using namespace std;

int main()

{

char str[80];

cout << "Enter a string: ";

gets(str); // read a string from the keyboard

cout << "Here is your string: ";

cout << str;

System("pause");

return 0;

}

cihan university/ sulaimaniyah

 Now, when you run the program and enter the string
"This is a test", the entire sentence is read and then
displayed, as this sample run shows.

Enter a string: This is a test

Here is your string: This is a test.

Example

cihan university/ sulaimaniyah

#include <iostream>

#include <string>

using namespace std;

int main ()

{

 char question1[] = "What is your name? ";

 string question2 = "Where do you live? ";

 char answer1 [80];

 string answer2;

 cout << question1;

 cin >> answer1;

 cout << question2;

 cin >> answer2;

 cout << "Hello, " << answer1;

 cout << " from " << answer2 << "!\n";

 system("pause");

 return 0;

}

What is your name? Omer
Where do you live? Greece
Hello, Omer from Greece!

Example

cihan university/ sulaimaniyah

 char name[10];

 cout << “enter name: “;

 cin >> name;

 cout << name;

cihan university/ sulaimaniyah

 char name[10];

 cout << “enter name: “;

 cin >> name;

 cout << name;

? ? ? ? ? ? ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

cihan university/ sulaimaniyah

 char name[10];

 cout << “enter name: “;

 cin >> name; // user inputs Ahmed

 cout << name;

? ? ? ? ? ? ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

cihan university/ sulaimaniyah

 char name[10];

 cout << “enter name: “;

 cin >> name; // user inputs Ahmed

 cout << name;

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 char name[10];

 cout << “enter name: “;

 cin >> name;

 cout << name; //Ahmed is displayed

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 char name[10];

 cout << “enter name: “;

 cin >> name; // user inputs Jo Ann

 cout << name;

? ? ? ? ? ? ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 char name[10];

 cout << “enter name: “;

 cin >> name; // user inputs Jo Ann

 cout << name;

J o \0 ? ? ? ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 char name[10];

 cout << “enter name: “;

 cin >> name;

 cout << name; //Jo is displayed

J o \0 ? ? ? ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

Using the Null-Terminating Character

// ex1: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 0

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 0

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 1

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 1

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 2

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 2

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 3

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 3

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 4

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 4

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

long string_length (const char ntca[])

{

 long length = 0;

 while (ntca[length] != ‘\0’)

 length++;

 return length;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5

Using the Null-Terminating Character

//ex2: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length =
i=
output buffer=

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=
output buffer=

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=4
output buffer=

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=4
output buffer=d

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=3
output buffer=d

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=3
output buffer=de

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=2
output buffer=de

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=2
output buffer=dem

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=1
output buffer=dem

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=1
output buffer=demh

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=0
output buffer=demh

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=0
output buffer=demhA

Using the Null-Terminating Character

// Pre: char array must have null character at the end of data.

void print_reverse (const char ntca[])

{

 long length = string_length(ntca);

 for (long i = length-1; i >= 0; i--)

 cout<<ntca[i];

 return;

}

A h m e d \0 ? ? ? ?

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

length = 5
i=-1
output buffer=demhA

Two-Dimensional Arrays

cihan university/ sulaimaniyah

 C++ allows multidimensional arrays. The simplest
form of the multidimensional array is the two-
dimensional array. A two-dimensional array is, in
essence, a list of one-dimensional arrays. To declare
a two-dimensional integer array twod of size 10,20
you would write.

int twod[10][20];

cihan university/ sulaimaniyah

 Pay careful attention to the declaration. Unlike some
other computer languages, which use commas to
separate the array dimensions, C++ places each
dimension in its own set of brackets.

 Similarly, to access point 3,5 of array twod, you
would use.

 twod [3][5].

cihan university/ sulaimaniyah

 jimmy represents a bidimensional array of 3 per 5
elements of type int. The C++ syntax for this is:

 int jimmy [3][5];

cihan university/ sulaimaniyah

 For example, the way to reference the second
element vertically and fourth horizontally in an
expression would be:

 jimmy[1][3]

(remember that array indices always begin with
zero).

Example, a two-dimensional array is loaded with
the numbers 1 through 12.

cihan university/ sulaimaniyah

#include <iostream>

using namespace std;

int main()

{

int t,i, num[3][4];

for(t=0; t<3; ++t) {

for(i=0; i<4; ++i) {

num[t][i] = (t*4)+i+1;

cout << num[t][i] << ' ';

}

cout << '\n';

}

system("pause");

return 0;

}

cihan university/ sulaimaniyah

 In this example, num[0][0] will have the value 1,
num[0][1] the value 2,

 num[0][2] the value 3, and so on.

 The value of num[2][3] will be 12.

num[t][i] = (t*4)+i+1;

Multidimensional Arrays

cihan university/ sulaimaniyah

 C++ allows arrays with more than two dimensions.
Here is the general form of a multidimensional array
declaration:

 type name[size1][size2]...[sizeN];

 For example, the following declaration creates a 4 ×
10 × 3 integer array:

 int multidim[4][10][3];

 Arrays of more than three dimensions are not often
used, due to the amount of memory required to hold
them.

Example

cihan university/ sulaimaniyah

The following program uses the sqrs array to find the square of a number
entered by the user. It first looks up the number in the array and then
prints the corresponding square.
#include <iostream>

using namespace std;

int sqrs[10][2] = {

{1, 1},

{2, 4},

{3, 9},

{4, 16},

{5, 25},

{6, 36},

{7, 49},

{8, 64},

{9, 81},

{10, 100}

};

continue

cihan university/ sulaimaniyah

int main()
{
int i, j;
cout << "Enter a number between 1 and 10: ";
cin >> i;
// look up i
for(j=0; j<10; j++)
if(sqrs[j][0]==i) break;
// display square
cout << "The square of " << i << " is ";
cout << sqrs[j][1];
system("pause");
return 0;
}

Stack Data Structures

cihan university/ sulaimaniyah

Stacks

 Stack is an abstract data type with a bounded
(predefined) capacity. It is a simple data structure
that allows adding and removing elements in a
particular order. Every time an element is added, it
goes on the top of the stack, the only element that
can be removed is the element that was at the top of
the stack, just like a pile of objects.

87

cihan university/ sulaimaniyah

 Stack Syntax

 To create a stack, we must include the <stack>
header file in our code. We then use this syntax to
define the std::stack:

 Member Types

Here are stack member types:
 value_type- The first template parameter, T. It denotes the

element types.

 container_type- The second template parameter, Container. It
denotes the underlying container type.

 size_type- Unsigned integral type.

Stack data structure

89

Basic features of Stack

 Stack is an ordered list of similar data type.

 Stack is a LIFO structure. (Last in First out).

 push() function is used to insert new elements into
the Stack and pop() is used to delete an element
from the stack. Both insertion and deletion are
allowed at only one end of Stack called Top.

 Stack is said to be in Overflow state when it is
completely full and is said to be in Underflow state
if it is completely empty.

90

Applications of Stack

 The simplest application of a stack is to reverse a
word. You push a given word to stack - letter by
letter - and then pop letters from the stack.

 There are other uses also like
: Parsing, Expression Conversion(Infix to
Postfix, Postfix to Prefix etc) and many more.

91

Implementation of Stack

 Stack can be easily implemented using an Array or a
Linked List. Arrays are quick, but are limited in size
and Linked List requires overhead to allocate, link,
unlink, and deallocate, but is not limited in size.
Here we will implement Stack using array.

92

Push Operation

 The process of putting a new data element onto stack
is known as a Push Operation. Push operation
involves a series of steps −

 Step 1 − Checks if the stack is full.

 Step 2 − If the stack is full, produces an error and exit.

 Step 3 − If the stack is not full, increments top to point next
empty space.

 Step 4 − Adds data element to the stack location, where top is
pointing.

 Step 5 − Returns success.

94

95

Pop Operation

 Accessing the content while removing it from the
stack, is known as a Pop Operation. In an array
implementation of pop() operation, the data element
is not actually removed, instead top is decremented
to a lower position in the stack to point to the next
value. But in linked-list implementation, pop()
actually removes data element and deallocates
memory space.

96

 A Pop operation may involve the following steps −

 Step 1 − Checks if the stack is empty.

 Step 2 − If the stack is empty, produces an error and exit.

 Step 3 − If the stack is not empty, accesses the data element at
which top is pointing.

 Step 4 − Decreases the value of top by 1.

 Step 5 − Returns success.

97

Operations in Stack

cihan university/ sulaimaniyah

 A C++ stack supports the following basic operations:

 push – It adds/pushes an item into the stack.

 pop – It removes/pops an item from the stack.

 peek – Returns the top item of the stack without
removing it.

 isFull – Checks whether a stack is full.

 isEmpty – Checks whether a stack is empty.

 LIFO Refers to the last in, first out behavior of the
stack

 FILO Equivalent to LIFO

Position of Top Status of Stack

-1 Stack is Empty

0 Only one element in Stack

N-1 Stack is Full

N Overflow state of Stack

100

cihan university/ sulaimaniyah

Stack Implementation

cihan university/ sulaimaniyah

 Step 1) We initially have an empty stack. The top of an
empty stack is set to -1.

 Step 2) Next, we have pushed the element 5 into the
stack. The top of the stack will points to the element 5.

 Step 3) Next, we have pushed the element 50 into the
stack. The top of the stack shifts and points to the
element 50.

 Step 4) We have then performed a pop operation,
removing the top element from the stack. The element 50
is popped from the stack. The top of the stack now points
to the element 5.

Example
#include <iostream>

#include <stack>

using namespace std;

int main() {

stack<int> st;

st.push(10);

st.push(20);

st.push(30);

st.push(40);

st.pop();

st.pop();

while (!st.empty()) {

cout << ' ' << st.top();

st.pop();

}

system("pause");

return 0;

}

empty(), size(), top()

cihan university/ sulaimaniyah

Stacks have inbuilt functions that you can use to play
around with the stack and its values. These include:

 empty() checks whether a stack is empty or not.

 size() returns the size of stack, that is, number of
elements in a stack.

 top() accesses stack element at the top.

Example

cihan university/ sulaimaniyah

#include <iostream>
#include <stack>
using namespace std;
void createStack(stack <int>
mystack)
{
stack <int> ms = mystack;
while (!ms.empty())
 {
 cout << '\t' <<
ms.top();
 ms.pop();
 }
 cout << '\n';
}

int main()
{
stack <int> st;
st.push(32);
st.push(21);
st.push(39);
st.push(89);
st.push(25);

cout << "The stack st is: ";
createStack(st);
cout << "\n st.size() : " << st.size();
cout << "\n st.top() : " << st.top();
cout << "\n st.pop() : ";
 st.pop();
 createStack(st);
 return 0;
}

emplace() and swap()

cihan university/ sulaimaniyah

 These are other inbuilt stack functions:

 emplace()- constructs then inserts new element to
top of stack.

 swap()- exchanges stack contents with another
stack’s contents.

cihan university/ sulaimaniyah

#include <iostream>
#include <stack>
using namespace std;
int main() {
stack<int> st1;
stack<int> st2;

st1.emplace(12);
st1.emplace(19);

st2.emplace(20);
st2.emplace(23);

st1.swap(st2);

cout << "st1 = ";
while (!st1.empty()) {
cout << st1.top() << " ";
st1.pop();
}

cout << endl << "st2 = ";
while (!st2.empty()) {
cout << st2.top() << " ";
st2.pop();
}
system("pause");
return 0;
}

Infix expression

cihan university/ sulaimaniyah

 An infix expression is an expression in which
operators (+, -, *, /) are written between the two
operands. For example, consider the following
expressions:

 A + B

 A + B - C

 (A + B) + (C - D)

Here we have written '+' operator between the
operands A and B, and the - operator in between the C
and D operand.

Postfix Expression

cihan university/ sulaimaniyah

 The postfix operator also contains operator and
operands. In the postfix expression, the operator is
written after the operand. It is also known
as Reverse Polish Notation. For example,
consider the following expressions:

 A B +

 A B + C -

 A B C * +

 A B + C * D -

Algorithm to Convert Infix to Postfix Expression
Using Stack

cihan university/ sulaimaniyah

 Initialize the Stack.

 Scan the operator from left to right in the infix expression.

 If the leftmost character is an operand, set it as the current
output to the Postfix string.

 And if the scanned character is the operator and the Stack is
empty or contains the '(', ')' symbol, push the operator into the
Stack.

 If the scanned operator has higher precedence than the
existing precedence operator in the Stack or if the Stack is
empty, put it on the Stack.

 If the scanned operator has lower precedence than the
existing operator in the Stack, pop all the Stack operators.
After that, push the scanned operator into the Stack.

cihan university/ sulaimaniyah

 If the scanned character is a left bracket '(', push it
into the Stack.

 If we encountered right bracket ')', pop the Stack and
print all output string character until '(' is
encountered and discard both the bracket.

 Repeat all steps from 2 to 8 until the infix expression
is scanned.

 Print the Stack output.

 Pop and output all characters, including the
operator, from the Stack until it is not empty.

cihan university/ sulaimaniyah

 Let's translate an infix expression into postfix
expression in the stack:

 Here, we have infix expression ((A * (B + D)/E) –
(F * (G + H / K))) to convert into its equivalent
postfix expression:

((A * (B + D)/E) – (F * (G + H / K)))

cihan university/ sulaimaniyah

Label No. Symbol Scanned Stack Expression

1 ((

2 (((

3 A ((A

4 * ((* A

5 (((*(A

6 B ((*(AB

7 + ((*(+ AB

8 D ((*(+ ABD

9) ((* ABD+

10 / ((*/ ABD+

11 E ((*/ ABD+E

12) (ABD+E/*

((A * (B + D)/E) – (F * (G + H / K)))

cihan university/ sulaimaniyah

13 - (- ABD+E/*

14 ((-(ABD+E/*

15 F (-(ABD+E/*F

16 * (-(* ABD+E/*F

17 ((-(*(ABD+E/*F

18 G (-(*(ABD+E/*FG

19 + (-(*(+ ABD+E/*FG

20 H (-(*(+ ABD+E/*FGH

21 / (-(*(+/ ABD+E/*FGH

22 K (-(*(+/ ABD+E/*FGHK

23) (-(* ABD+E/*FGHK/+

24) (- ABD+E/*FGHK/+*

25) ABD+E/*FGHK/+*-

Data Structures

QUEUE DATA
STRUCTURES

115

Queue Data Structures

 Queue is also an abstract data type or a linear data
structure, in which the first element is inserted from
one end called REAR(also called tail), and the
deletion of existing element takes place from the
other end called as FRONT(also called head). This
makes queue as FIFO data structure, which means
that element inserted first will also be removed first.

 The process to add an element into queue is
called Enqueue and the process of removal of an
element from queue is called Dequeue.

116

117

cihan university/ sulaimaniyah

Basic features of Queue

 Like Stack, Queue is also an ordered list of elements of
similar data types.

 Queue is a FIFO(First in First Out) structure.

 Once a new element is inserted into the Queue, all the
elements inserted before the new element in the queue
must be removed, to remove the new element.

 peek() function is oftenly used to return the value of
first element without dequeuing it.

119

Operations on Queue:

cihan university/ sulaimaniyah

enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.
 peek() − Gets the element at the front of the queue without

removing it.
 isfull() − Checks if the queue is full.
 isempty() − Checks if the queue is empty.

Front: Get the front item from queue.
Rear: Get the last item from queue.

 In queue, we always dequeue (or access) data, pointed
by front pointer and while enqueing (or storing) data in the
queue we take help of rear pointer.

peek()

cihan university/ sulaimaniyah

 This function helps to see the data at the front of the
queue. The algorithm of peek() function is as follows −

 Algorithm
begin procedure peek
 return queue[front]
end procedure
Implementation of peek() function in C++ programming
language −
 Example
int peek() {
return queue[front];
}

isfull()

cihan university/ sulaimaniyah

 As we are using single dimension array to implement
queue, we just check for the rear pointer to reach at
MAXSIZE to determine that the queue is full.

Algorithm

begin procedure isfull

 if rear equals to MAXSIZE
 return true
 else
 return false
 endif

end procedure

Implementation of isfull() function in C++
programming language

cihan university/ sulaimaniyah

Example

bool isfull() {

 if(rear == MAXSIZE - 1)

 return true;

 else

 return false;

}

isempty()

cihan university/ sulaimaniyah

Algorithm

begin procedure isempty

 if front is less than MIN OR front is greater than rear
 return true
 else
 return false
 endif

end procedure

If the value of front is less than MIN, it tells that the queue is not yet
initialized, hence empty.

Here's the C++ programming code −

cihan university/ sulaimaniyah

Example

bool isempty() {

 if(front < 0 || front > rear)

 return true;

 else

 return false;

}

Applications of Queue

 Queue, as the name suggests is used whenever we need
to have any group of objects in an order in which the
first one coming in, also gets out first while the others
wait for there turn, like in the following scenarios :

 Serving requests on a single shared resource, like a printer, CPU
task scheduling etc.

 In real life, Call Center phone systems will use Queues, to hold
people calling them in an order, until a service representative is free.

 Handling of interrupts in real-time systems. The interrupts are

handled in the same order as they arrive, First come first served.

Priority Queue

cihan university/ sulaimaniyah

Priority Queue is an extension of queue with following
properties.

Every item has a priority associated with it.

An element with high priority is dequeued before
an element with low priority.

 If two elements have the same priority, they are
served according to their order in the queue.

https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/
https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

cihan university/ sulaimaniyah

 In the below priority queue, element with maximum
ASCII value will have the highest priority.

A typical priority queue supports following
operations.

cihan university/ sulaimaniyah

insert(item, priority): Inserts an item with given
priority.
getHighestPriority(): Returns the highest priority
item.
deleteHighestPriority(): Removes the highest
priority item.

How to implement priority queue?

cihan university/ sulaimaniyah

 Using Array: A simple implementation is to use
array of following structure.

struct item {

 int item;

int priority;

}

cihan university/ sulaimaniyah

 insert() operation can be implemented by adding an
item at end of array

 getHighestPriority() operation can be implemented
by linearly searching the highest priority item in
array

 deleteHighestPriority() operation can be
implemented by first linearly searching an item, then
removing the item by moving all subsequent items
one position back.

Applications of Priority Queue:

cihan university/ sulaimaniyah

1) CPU Scheduling

2) Graph algorithms like Dijkstra’s shortest path
algorithm, Prim’s Minimum Spanning Tree, etc

3) All queue applications where priority is involved.

https://www.geeksforgeeks.org/greedy-algorithms-set-7-dijkstras-algorithm-for-adjacency-list-representation/
https://www.geeksforgeeks.org/greedy-algorithms-set-7-dijkstras-algorithm-for-adjacency-list-representation/
https://www.geeksforgeeks.org/greedy-algorithms-set-7-dijkstras-algorithm-for-adjacency-list-representation/
https://www.geeksforgeeks.org/greedy-algorithms-set-7-dijkstras-algorithm-for-adjacency-list-representation/
https://www.geeksforgeeks.org/greedy-algorithms-set-5-prims-mst-for-adjacency-list-representation/
https://www.geeksforgeeks.org/applications-of-queue-data-structure/

Implementation of Queue

 Queue can be implemented using an Array, Stack or
Linked List. The easiest way of implementing a
queue is by using an Array.

 Initially the head(FRONT) and the tail(REAR) of
the queue points at the first index of the array
(starting the index of array from 0). As we add
elements to the queue, the tail keeps on moving
ahead, always pointing to the position where the next
element will be inserted, while the head remains at
the first index.

133

Array implementation Of Queue

 structure can be implemented using one dimensional
array. But, queue implemented using array can store only
fixed number of data values. The implementation of
queue data structure using array is very simple, just
define a one dimensional array of specific size and insert
or delete the values into that array by using FIFO (First
In First Out) principle with the help of
variables 'front' and 'rear'. Initially both 'front' and
'rear' are set to -1.

 Whenever, we want to insert a new value into the queue,
increment 'rear' value by one and then insert at that
position. Whenever we want to delete a value from the
queue, then increment 'front' value by one and then
display the value at 'front' position as deleted element.

134

Pros and cons of Array Implementation:

cihan university/ sulaimaniyah

Pros of Array Implementation

 Easy to implement.

Cons of Array Implementation:

 Static Data Structure, fixed size.

 If the queue has a large number of enqueue and
dequeue operations, at some point (in case of linear
increment of front and rear indexes) we may not be
able to insert elements in the queue even if the queue
is empty (this problem is avoided by using circular
queue).

enQueue(value) - Inserting value into the
queue

 In a queue data structure, enQueue() is a function used to
insert a new element into the queue. In a queue, the new
element is always inserted at rear position. The enQueue()
function takes one integer value as parameter and inserts that
value into the queue. We can use the following steps to insert
an element into the queue...

 Step 1 − Check if the queue is full.
 Step 2 − If the queue is full, produce overflow error and exit.
 Step 3 − If the queue is not full, increment rear pointer to

point the next empty space.
 Step 4 − Add data element to the queue location, where the

rear is pointing.
 Step 5 − return success

136

cihan university/ sulaimaniyah

cihan university/ sulaimaniyah

 Algorithm for enqueue operation
procedure enqueue(data)

 if queue is full
 return overflow
 endif

 rear ← rear + 1
 queue[rear] ← data
 return true

end procedure

cihan university/ sulaimaniyah

 Implementation of enqueue() in C++ programming language −

Example

int enqueue(int data)
 if(isfull())
 return 0;

 rear = rear + 1;
 queue[rear] = data;

 return 1;
end procedure

deQueue() - Deleting a value from the
Queue

 In a queue data structure, deQueue() is a function used to
delete an element from the queue. In a queue, the element is
always deleted from front position. The deQueue() function
does not take any value as parameter. We can use the
following steps to delete an element from the queue...

 Step 1 − Check if the queue is empty.
 Step 2 − If the queue is empty, produce underflow error and

exit.
 Step 3 − If the queue is not empty, access the data

where front is pointing.
 Step 4 − Increment front pointer to point to the next

available data element.
 Step 5 − Return success.

cihan university/ sulaimaniyah

Algorithm for dequeue operation

cihan university/ sulaimaniyah

procedure dequeue

 if queue is empty
 return underflow
 end if

 data = queue[front]
 front ← front + 1
 return true

end procedure

Implementation of dequeue() in C++
programming language −

cihan university/ sulaimaniyah

Example

int dequeue() {
 if(isempty())
 return 0;

 int data = queue[front];
 front = front + 1;

 return data;
}

cihan university/ sulaimaniyah

Types of Sorting Techniques

Types of Sorting Techniques

cihan university/ sulaimaniyah

 Bubble Sort

 Selection Sort

 Insertion Sort

 Quick Sort

 Merge Sort

 Heap Sort

Bubble Sorting

cihan university/ sulaimaniyah

 Bubble Sort is an algorithm which is used to
sort N elements that are given in a memory for eg: an
Array with N number of elements. Bubble Sort compares
all the element one by one and sort them based on their
values.

 It is called Bubble sort, because with each iteration the
smaller element in the list bubbles up towards the first
place, just like a water bubble rises up to the water
surface.

 Sorting takes place by stepping through all the data items
one-by-one in pairs and comparing adjacent data items
and swapping each pair that is out of order.

cihan university/ sulaimaniyah

cihan university/ sulaimaniyah

Bubble Sort ALGORITHM:

cihan university/ sulaimaniyah

 Bubble_Sort (A [] , N)

 Step 1: Start

 Step 2: Take an array of n elements

 Step 3: for i=0,………….n-2

 Step 4: for j=i+1,…….n-1

 Step 5: if arr[j]>arr[j+1] then

 Interchange arr[j] and arr[j+1]

 End of if

 Step 6: Print the sorted array arr

 Step 7:Stop

cihan university/ sulaimaniyah

 Note: Above is the algorithm, to sort an array using
Bubble Sort. Although the above logic will sort and
unsorted array, still the above algorithm isn't
efficient and can be enhanced further. Because as
per the above logic, the for loop will keep going for
six iterations even if the array gets sorted after the
second iteration.

cihan university/ sulaimaniyah

 Hence we can insert a flag and can keep checking
whether swapping of elements is taking place or not.
If no swapping is taking place that means the array is
sorted and we can jump out of the for loop.

cihan university/ sulaimaniyah

int a[6] = {5, 1, 6, 2, 4, 3};
int i, j, temp;
for(i=0; i<6; i++)
{
 int flag = 0; //taking a flag variable
 for(j=0; j<6-i-1; j++)
 {
 if(a[j] > a[j+1])
 {
 temp = a[j];
 a[j] = a[j+1];
 a[j+1] = temp;
 flag = 1; //setting flag as 1, if swapping occurs
 }
 }
 if(!flag) //breaking out of for loop if no swapping takes place
 {
 break;
 }
}

In this code, if in a complete
single cycle of j
iteration(inner for loop), no
swapping takes place, and
flag remains 0, then we will
break out of the for loops,
because the array has
already been sorted.

Selection Sorting

cihan university/ sulaimaniyah

 Selection sorting is conceptually the most simplest
sorting algorithm. This algorithm first finds the
smallest element in the array and exchanges it with
the element in the first position, then find the second
smallest element and exchange it with the element in
the second position, and continues in this way until
the entire array is sorted.

Selection sorting

cihan university/ sulaimaniyah

 Selection sort is quite a straightforward sorting
technique as the technique only involves finding the
smallest element in every pass and placing it in the
correct position.

 Selection sort works efficiently when the list to be
sorted is of small size but its performance is affected
badly as the list to be sorted grows in size.

 Hence we can say that selection sort is not advisable
for larger lists of data.

How Selection Sorting Works

cihan university/ sulaimaniyah

How Selection Sorting Works

cihan university/ sulaimaniyah

How Selection Sorting Works

cihan university/ sulaimaniyah

 In the first pass, the smallest element found is 1, so it
is placed at the first position, then leaving first
element, smallest element is searched from the rest
of the elements, 3 is the smallest, so it is then placed
at the second position. Then we leave 1 and 3, from
the rest of the elements, we search for the smallest
and put it at third position and keep doing this, until
array is sorted.

cihan university/ sulaimaniyah

cihan university/ sulaimaniyah

 From the illustration, we see that with every pass the
next smallest element is put in its correct position in
the sorted array. From the above illustration, we see
that in order to sort an array of 5 elements, four
passes were required. This means in general, to sort
an array of N elements, we need N-1 passes in total.

Generally How Selection Sorting Works

cihan university/ sulaimaniyah

 The first item is compared with the remaining n-1
items, and whichever of all is lowest, is put in the
first position.

 Then the second item from the list is taken and
compared with the remaining (n-2) items, if an item
with a value less than that of the second item is
found on the (n-2) items, it is swapped
(Interchanged) with the second item of the list and
so on.

cihan university/ sulaimaniyah

Examples is included in practical
worksheet

Insertion sort

cihan university/ sulaimaniyah

It is a simple Sorting algorithm which sorts the array by shifting
elements one by one. Following are some of the important
characteristics of Insertion Sort.

1. It has one of the simplest implementation
2. It is efficient for smaller data sets, but very inefficient for larger

lists.
3. Insertion Sort is adaptive, that means it reduces its total number

of steps if given a partially sorted list, hence it increases its
efficiency.

4. It is better than Selection Sort and Bubble Sort algorithms.
5. Its space complexity is less, like Bubble Sorting, insertion sort also

requires a single additional memory space.
6. It is Stable, as it does not change the relative order of elements

with equal keys

Stable vs unstable sort

cihan university/ sulaimaniyah

cihan university/ sulaimaniyah

 Insertion sort: It iterates, consuming one input
element each repetition, and growing a sorted output
list. Each iteration, insertion sort removes one
element from the input data, finds the location it
belongs within the sorted list, and inserts it there. It
repeats until no input elements remain.

cihan university/ sulaimaniyah

ALGORITHM:

Step 1: start

Step 2: for i ← 1 to length(A)

Step 3: j ← i

Step 4: while j > 0 and A[j-1] > A[j]

Step 5: swap A[j] and A[j-1]

Step 6: j ← j - 1

Step 7: end while

Step 8: end for

Step9: stop

How insertion sort works

cihan university/ sulaimaniyah

Sorting using Insertion Sort Algorithm

cihan university/ sulaimaniyah

int a[6] = {5, 1, 6, 2, 4, 3};
int i, j, key;
for(i=1; i<6; i++){
key = a[i];
j = i-1;
while(j>=0 && key < a[j])
 {
a[j+1] = a[j];
 j--;
}
 a[j+1] = key;
}

Sorting using Insertion Sort Algorithm

cihan university/ sulaimaniyah

 We took an array with 6 integers. We took a variable key,
in which we put each element of the array, in each pass,
starting from the second element, that is a[1].

 Then using the while loop, we iterate, until j becomes
equal to zero or we find an element which is greater
than key, and then we insert the key at that position.

 In the above array, first we pick 1 as key, we compare it
with 5(element before 1), 1 is smaller than 5, we shift 1
before 5. Then we pick 6, and compare it with 5 and 1, no
shifting this time. Then 2 becomes the key and is
compared with, 6 and 5, and then 2 is placed after 1. And
this goes on, until complete array gets sorted.

Insertion Sorting in C++

cihan university/ sulaimaniyah

#include <iostream>

using namespace std;

 //member functions declaration

void insertionSort(int arr[], int length);

void printArray(int array[],int size);

int main()

 {

int array[5]= {5,4,3,2,1};

insertionSort(array,5);

return 0;

}

cihan university/ sulaimaniyah

void insertionSort(int arr[], int length)
{
int i, j ,tmp;
for (i = 1; i < length; i++) {
j = i;
while (j > 0 && arr[j - 1] > arr[j])
 {
tmp = arr[j];
arr[j] = arr[j - 1];
arr[j - 1] = tmp;
j--;
}
printArray(arr,5);
}
}

cihan university/ sulaimaniyah

void printArray(int array[], int size)

{

cout<< "Sorting the array using Insertion sort ";

 int j;

for (j=0; j < size; j++)

cout <<" "<< array[j];

cout << endl;

}

Quick Sort Algorithm

cihan university/ sulaimaniyah

 Quick Sort, as the name suggests, sorts any list very
quickly. Quick sort is not stable search, but it is very
fast and requires very less additional space. It is
based on the rule of Divide and Conquer(also
called partition-exchange sort). This algorithm
divides the list into three main parts :

1. Elements less than the Pivot element

2. Pivot element

3. Elements greater than the pivot element

cihan university/ sulaimaniyah

 Quick sort :It is a divide and conquer algorithm.
Developed by Tony Hoare in 1959.

 Quicksort first divides a large array into two smaller
sub-arrays: the low elements and the high elements.

 Quick sort can then recursively sort the sub-arrays.

cihan university/ sulaimaniyah

Quicksort is one the very popular sorting algorithm
or technique to sort a collection of data. Quicksort is
better because of few decent reasons.

 It does not need any temporary storing memory;
which means if you don’t need to invest any more
storage capacity during the process. It makes sense
when your data is quite large.

 It is very fast because it uses divide and conquers. In
this algorithm, we choose a pivot and divide it into
two sub-arrays and then repeat the process again.

ALGORITHM:

cihan university/ sulaimaniyah

 Step 1: Pick an element, called a pivot, from the
array.

 Step 2: Partitioning: reorder the array so that all
elements with values less than the pivot come before
the pivot, while all elements with values greater than
the pivot come after it (equal values can go either
way). After this partitioning, the pivot is in its final
position. This is called the partition operation.

 Step 3: Recursively apply the above steps to the sub-
array of elements with smaller values and separately
to the sub-array of elements with greater values.

How Quick Sorting Works

cihan university/ sulaimaniyah

cihan university/ sulaimaniyah

 In the list of elements, mentioned in below example,
we have taken 25 as pivot. So after the first pass, the
list will be changed like this.

 6 8 17 14 25 63 37 52

 Hence after the first pass, pivot will be set at its
position, with all the elements smaller to it on its left
and all the elements larger than it on the right.
Now 6 8 17 14 and 63 37 52 are considered as two
separate lists, and same logic is applied on them, and
we keep doing this until the complete list is sorted.

5 picked as pivote

cihan university/ sulaimaniyah

0 1 2 3 4 5 6 7 8 9

cihan university/ sulaimaniyah

 The Above example shows it clearly that first choose the
pivot which is 5 in the array 6 1 4 3 5 7 9 2 8 0. Now start
from the first index and check if it’s greater than the
pivot, if you found a greater element which 6 in our case,
6 1 4 3 5 7 9 2 8 0. We will replace it with the element
which is lower than the pivot and is in the right side of
the pivot or the pivot itself in some case.

 When all the elements which are smaller than the pivot
are on the left side and all the elements which are bigger
than the pivot are on the right side, at that point we call
the Quicksort function again with the different indices.

 This approach makes it possible to process in the sub-
array without conflict the other elements of the main
array.

Algorithm of Quicksort:

cihan university/ sulaimaniyah

cihan university/ sulaimaniyah

cihan university/ sulaimaniyah

cihan university/ sulaimaniyah

MERGE SORT

cihan university/ sulaimaniyah

 Merge sort is a sorting technique based on divide and
conquer technique. In merge sort the unsorted list is
divided into N sublists, each having one element,
because a list of one element is considered sorted.
Then, it repeatedly merge these sublists, to produce
new sorted sublists, and at lasts one sorted list is
produced. Merge Sort is quite fast,

 It is also a stable sort, which means the "equal"
elements are ordered in the same order in the sorted
list.

Conceptually, merge sort works as
follows:

cihan university/ sulaimaniyah

1. Divide the unsorted list into two sub lists of about
half the size.

2. Divide each of the two sub lists recursively until we
have list sizes of length 1, in which case the list itself is
returned.

3. Merge the two sub lists back into one sorted list.

cihan university/ sulaimaniyah

cihan university/ sulaimaniyah

HEAP SORT

cihan university/ sulaimaniyah

 Heap sort is one of the sorting algorithms used to
arrange a list of elements in order. Heapsort algorithm
uses one of the tree concepts called Heap Tree. In this
sorting algorithm, we use Max Heap to arrange list of
elements in Descending order and Min Heap to arrange
list elements in Ascending order.

 It is a completely binary tree with the property that a
parent is always greater than or equal to either of its
children (if they exist). first the heap (max or min) is
created using binary tree and then heap is sorted using
priority queue.

Heap sort Algorithm

cihan university/ sulaimaniyah

 The Heap sort algorithm to arrange a list of elements in
ascending order is performed using following steps...

 Step 1 - Construct a Binary Tree with given list of
Elements.

 Step 2 - Transform the Binary Tree into Min Heap.
 Step 3 - Delete the root element from Min Heap

using Heapify method.
 Step 4 - Put the deleted element into the Sorted list.
 Step 5 - Repeat the same until Min Heap becomes

empty.
 Step 6 - Display the sorted list.

Heap sort Algorithm

cihan university/ sulaimaniyah

 The Heap sort algorithm to arrange a list of elements in
descending order is performed using following steps...

 Step 1 - Construct a Binary Tree with given list of
Elements.

 Step 2 - Transform the Binary Tree into Max Heap.
 Step 3 - Delete the root element from Max Heap

using Heapify method.
 Step 4 - Put the deleted element into the Sorted list.
 Step 5 - Repeat the same until Max Heap becomes

empty.
 Step 6 - Display the sorted list.

cihan university/ sulaimaniyah

 Heap is a special tree-based data structure, that
satisfies the following special heap properties :

 Shape Property : Heap data structure is always a
Complete Binary Tree, which means all levels of the
tree are fully filled.

cihan university/ sulaimaniyah

cihan university/ sulaimaniyah

 Heap Property : All nodes are either [greater than
or equal to] or [less than or equal to] each of its
children.

 If the parent nodes are greater than their children,
heap is called a Max-Heap, and if the parent nodes
are smaller than their child nodes, heap is
called Min-Heap.

Heap sort steps explained in the
class using white board

cihan university/ sulaimaniyah

Introduction to Linked
Lists

D A T A S T R U C T U R E S

2 N D S T A G E

Linked List

 Linked List is a linear data structure and it is very
common data structure which consists of group of
nodes in a sequence which is divided in two parts.
Each node consists of its own data and the address of
the next node and forms a chain. Linked Lists are
used to create trees and graphs.

Advantages of Linked Lists

 They are a dynamic in nature which allocates the
memory when required.

 Insertion and deletion operations can be easily
implemented.

 Stacks and queues can be easily executed.

 Linked List reduces the access time.

Disadvantages of Linked Lists

 The memory is wasted as pointers require extra
memory for storage.

 No element can be accessed randomly; it has to
access each node sequentially.

 Reverse Traversing is difficult in linked list.

Applications of Linked Lists

 Linked lists are used to implement stacks, queues,
graphs, etc.

 Linked lists let you insert elements at the beginning
and end of the list.

 In Linked Lists we don’t need to know the size in
advance.

Types of Linked Lists

1. Singly Linked List : Singly linked lists contain
nodes which have a data part as well as an address
part i.e. next, which points to the next node in
sequence of nodes. The operations we can perform
on singly linked lists are insertion, deletion and
traversal.

Singly Linked List

Types of Linked Lists

2. Doubly Linked List : In a doubly linked list, each
node contains two links the first link points to the
previous node and the other link points to the next
node in the sequence.

Doubly Linked
List

Types of Linked Lists

3.Circular Linked List : In the circular linked list
the last node of the list contains the address of the
first node and forms a circular chain.

Circular Linked List

Linear Linked List

 The element can be inserted in linked list in 2 ways :

 Insertion at beginning of the list.

 Insertion at the end of the list.

 We will also be adding some more useful methods
like :

 Checking whether Linked List is empty or not.

 Searching any element in the Linked List

 Deleting a particular Node from the List

Example

 Before inserting the node in the list we will create a class Node. Like shown below :

class Node {

 public:

 int data;

 //pointer to the next node

 node* next;

 node() {

 data = 0;

 next = NULL;

}

node(int x)

{

 data = x;

 next = NULL;

}

}

Node class
basically creates a
node for the data
which you enter to
be included into
Linked List. Once
the node is
created, we use
various functions
to fit in that node
into the Linked
List.

Linked list class

class LinkedList {
 public:
 node *head;
//declaring the functions
//function to add Node at front
 int addAtFront(node *n);
 //function to check whether Linked list is empty
int isEmpty();
 //function to add Node at the End of list
 int addAtEnd(node *n);
//function to search a value
node* search(int k);
//function to delete any Node
node* deleteNode(int x);
 LinkedList() {
 head = NULL;
 }
}

Insertion at the Beginning

 Steps to insert a Node at beginning :

1. The first Node is the Head for any Linked List.
2. When a new Linked List is instantiated, it just has the Head,

which is Null.
3. Else, the Head holds the pointer to the first Node of the List.
4. When we want to add any Node at the front, we must make

the head point to it.
5. And the Next pointer of the newly added Node, must point

to the previous Head, whether it be NULL(in case of new
List) or the pointer to the first Node of the List.

6. The previous Head Node is now the second Node of Linked
List, because the new Node is added at the front.

int LinkedListaddAtFront(node *n)

 { int i = 0;

//making the next of the new Node point to Head n-
>next = head;

 //making the new Node as Head

 head = n;

 i++;

 //returning the position where Node is added return
i;

}

-> for accessing object member variables and methods via pointer to
object

Inserting at the End

1. If the Linked List is empty then we simply, add the
new Node as the Head of the Linked List.

2. If the Linked List is not empty then we find the last
node, and make it’s next to the new Node, hence
making the new node the last Node.

int LinkedListaddAtEnd(node *n) {

 //If list is empty

 if(head == NULL)

{

//making the new Node as Head

head = n;

//making the next pointe of the new Node as Null

 n->next = NULL;

}

else {

 //getting the last node

 node *n2 = getLastNode();

 n2->next = n;

 }

}

 node* LinkedList getLastNode()

{

//creating a pointer pointing to Head

 node* ptr = head;

//Iterating over the list till the node whose Next pointer points to null

//Return that node, because that will be the last node.

 while(ptr->next!=NULL)

{

 //if Next is not Null, take the pointer one step forward

ptr = ptr->next;

 }

 return ptr;

}

Searching for an Element in the List

 In searching we do not have to do much, we just
need to traverse like we did while getting the last
node, in this case we will also compare the data of
the Node. If we get the Node with the same data, we
will return it, otherwise we will make our pointer
point the next Node, and so on.

Deleting a Node from the List

 Deleting a node can be done in many ways, like we first
search the Node with data which we want to delete and
then we delete it. In our approach, we will define a
method which will take the data to be deleted as
argument, will use the search method to locate it and will
then remove the Node from the List.
 To remove any Node from the list, we need to do the following :

 If the Node to be deleted is the first node, then simply set the Next
pointer of the Head to point to the next element from the Node to be
deleted.

 If the Node is in the middle somewhere, then find the Node before it,
and make the Node before it point to the Node next to it.

Checking whether the List is empty or not

We just need to check whether the Head of the List
is NULL or not.

int LinkedListisEmpty() {

 if(head == NULL) {

return 1;

} else

{ return 0;

}

}

 If you are still figuring out, how to call all these
methods, then below is how your main() method will
look like. As we have followed OOP standards, we
will create the objects of LinkedList class to
initialize our List and then we will create objects
of Node class whenever we want to add any new
node to the List.

int main() {
LinkedList L;
//We will ask value from user, read the value and add the value to our Node
 int x;
cout << "Please enter an integer value : ";
 cin >> x;
 Node *n1;
 //Creating a new node with data as x
 n1 = new Node(x);
 //Adding the node to the list
L.addAtFront(n1);
}

Similarly you can call any of the functions of the LinkedList class, add as many Nodes you
want to your List.

Linear data structures

 Linear data structures organize their data elements in a linear
fashion, where data elements are attached one after the other. Data
elements in a liner data structure are traversed one after the other
and only one element can be directly reached while traversing.
Linear data structures are very easy to implement, since the
memory of the computer is also organized in a linear fashion.

 Some commonly used linear data structures are arrays, linked lists,
stacks and queues. An arrays is a collection of data elements where
each element could be identified using an index. A linked list is a
sequence of nodes, where each node is made up of a data element
and a reference to the next node in the sequence. A stack is actually
a list where data elements can only be added or removed from the
top of the list. A queue is also a list, where data elements can be
added from one end of the list and removed from the other end of
the list.

Nonlinear data structures

 In nonlinear data structures, data elements are not
organized in a sequential fashion. A data item in a nonlinear
data structure could be attached to several other data
elements to reflect a special relationship among them and
all the data items cannot be traversed in a single run.

 Data structures like multidimensional arrays, trees and
graphs are some examples of widely used nonlinear data
structures.
 A multidimensional array is simply a collection of one-dimensional

arrays.

 A tree is a data structure that is made up of a set of linked nodes,
which can be used to represent a hierarchical relationship among data
elements.

 A graph is a data structure that is made up of a finite set of edges and
vertices. Edges represent connections or relationships among vertices
that stores data elements.

Difference between Linear and Nonlinear
Data Structures

 Main difference between linear and nonlinear data
structures lie in the way they organize data elements. In
linear data structures, data elements are organized
sequentially and therefore they are easy to implement in
the computer’s memory. In nonlinear data structures, a
data element can be attached to several other data
elements to represent specific relationships that exist
among them. Due to this nonlinear structure, they might
be difficult to be implemented in computer’s linear
memory compared to implementing linear data
structures. Selecting one data structure type over the
other should be done carefully by considering the
relationship among the data elements that needs to be
stored.

Graph

 A graph is a set of items that are connected by edges
and each item is known as node or vertex. In other
words, a graph can be defined as the set of vertices
and there is a binary relation between these vertices.

 In implementation of a graph, the nodes are
implemented as objects or structures. The edges can be
represented in different ways. One of the ways is that
each node can be associated with an incident edges array.
If the information is to be stored in nodes rather than
edges then the arrays acts as pointers to nodes and also
represent edges. One of the advantages of this approach
is that additional nodes can be added to the graph.
Existing nodes can be connected by adding elements to
arrays. But there is one disadvantage because time is
required in order to determine whether there is an edge
between the nodes.

 Other way to do this is to keep a two dimensional
array or matrix M that has Boolean values. The
existence of edge from node i to j is specified by entry
Mij. One of the advantages of this method is to find
out if there is any edge between two nodes.

Tree

 Tree is also a data structure used in computer science. It
is similar to the structure of the tree and has a set of
nodes that are linked to each other.

 A node of a tree may contain a condition or value. It can
also be a tree of its own or it can represent a separate
data structure. Zero or more nodes are present in a tree
data structure. If a node has a child then it is called
parent node of that child. There can be at most one
parent of a node. The longest downward path from the
node to a leaf is the height of the node. The depth of node
is represented by the path to its root.

 In a tree, the topmost node is called root node. The
root node has no parents as it is the top most one.
From this node, all tree operations begin. By using
links or edges, other nodes can be reached from the
root node. The bottom-most level nodes are called
leaf nodes and they don’t have any children. The
node that has number of child nodes is called inner
node or internal node.

Difference between graph and tree:

• A tree can be described as a specialized case of graph
with no self loops and circuits.

• There are no loops in a tree whereas a graph can have
loops.

• There are three sets in a graph i.e. edges, vertices and
a set that represents their relation while a tree
consists of nodes that are connected to each other.
These connections are referred to as edges.

• In tree there are numerous rules spelling out how
connections of nodes can occur whereas graph has
no rules dictating the connection among the nodes.

Tree data structure

2 N D S T A G E

Tree

 Tree: So far, we have been studying mainly linear
types of data structures: arrays, lists, stacks and
queues. Now we defines a nonlinear data structure
called Tree. This structure is mainly used to
represent data containing a hierarchical relationship
between nodes/elements e.g. family trees and tables
of contents. There are two main types of tree:

 General Tree

 Binary Tree

General Tree

 General Tree: A tree where a node can has any
number of children / descendants is called General
Tree. For example:

Following figure is also an example of general
tree where root is “Desktop”.

Binary Tree

 Binary Tree: A tree in which each element may has
0-child , 1-child or maximum of 2-children. A Binary
Tree T is defined as finite set of elements, called
nodes, such that

 a) T is empty (called the null tree or empty tree.)

 b) T contains a distinguished node R, called the root
of T, and the remaining nodes of T form an ordered
pair of disjoint binary trees T1 and T2.

 If T does contain a root R, then the two trees T1 and
T2 are called, respectively, the left sub tree and right
sub tree of R.

 If T1 is non empty, then its node is called the left
successor of R; similarly, if T2 is non empty, then its
node is called the right successor of R. The nodes with
no successors are called the terminal nodes.

 If N is a node in T with left successor S1 and right
successor S2, then N is called the parent(or father) of
S1 and S2. Analogously, S1 is called the left child (or
son) of N, and S2 is called the right child (or son) of N.

 Furthermore, S1 and S2 are said to siblings (or
brothers). Every node in the binary tree T, except the
root, has a unique parent, called the predecessor of N.

 The line drawn from a node N of T to a successor is
called an edge, and a sequence of consecutive edges is
called a path.

 A terminal node is called a leaves, and a path ending in
a leaves is called a branch.

 The depth (or height) of a tree T is the maximum
number of nodes in a branch of T. This turns out to
be 1 more than the largest level number of T. Level of
node & its generation: Each node in binary tree T is
assigned a level number, as follows.

 The root R of the tree T is assigned the level number
0, and every other node is assigned a level number
which is 1 more than the level number of its parent.
Furthermore, those nodes with the same level
number are said to belong to the same generation.

Complete Binary Tree

 Complete Binary Tree: Consider a binary tree T. each
node of T can have at most two children.
Accordingly. A tree is said to be complete if all its
levels, except possibly the last have the maximum
number of possible nodes, and if all the nodes at the
last level appear as far left as possible.

Extended Binary Tree: 2-Tree

 Extended Binary Tree: 2-Tree:

 A binary tree T is said to be a 2-tree or an extended
binary tree if each node:

 N has either 0 or 2 children.

 In such a case, the nodes, with 2 children are called internal
nodes,

 node with 0 children are called external node.

Traversing of Binary Tree:

Traversing of Binary Tree:

Preparing a Tree from an infix
arithmetic expression

Binary Search Tree:

 Suppose T is a binary tree, the T is called a binary
search tree or binary

 sorted tree if each node N of T has the following
property:

 The values of at N (node) is greater than every value in the left
sub tree of

 N and is less than every value in the right sub tree of N.

 Binary Search Tree using these values: (50, 30, 55,
25, 10, 35, 31,37, 20, 53, 60, 62)

 Following figure shows a binary search tree. Notice that

this tree is obtained by inserting the values 13, 3, 4, 12, 14,
10, 5, 1, 8, 2, 7, 9, 11, 6, 18 in that order, starting from an
empty tree.

sorting

 Sorting: Note that inorder traversal of a
binary search tree always gives a sorted

 sequence of the values. This is a direct consequence
of the BST property.

 This provides a way of sorting a given sequence of
keys: first, create a BST with these keys and then do
an inorder traversal of the BST so created.

 Inorder Travers (LNR) : 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 15, 18

Search

 Search: is straightforward in a BST. Start with the
root and keep moving left or right using the BST
property. If the key we are seeking is present, this
search procedure will lead us to the key. If the key is
not present, we end up in a null link.

Insertion

 Insertion in a BST is also a straightforward
operation. If we need to insert an element n, we
traverse tree starting from root by considering the
above stated rules. Our traverse procedure ends in a
null link. It is at this position of this null link that n
will be included.

Deletion in BST

 Deletion in BST: Let x be a value to be deleted
from the BST and let N denote the node containing
the value x. Deletion of an element in a BST again
uses the BST property in a critical way. When we
delete the node N containing x, it would create a
"gap" that should be filled by a suitable existing node
of the BST. There are two possible candidate nodes
that can fill this gap, in a way that the BST property
is not violated:

 1) Node containing highest valued element among all
descendants of left child of N.

 2)Node containing the lowest valued element among all
the descendants of the right child of N. There are three
possible cases to consider:
 Deleting a leaf (node with no children): Deleting a leaf is

easy, as we can simply remove it from the tree.

 Deleting a node with one child: Delete it and replace it with
its child.

 Deleting a node with two children: Call the node to be
deleted "N". Do not delete N. Instead, choose its in-order successor
node "S". Replace the value of “N” with the value of “S”. (Note: S
itself has up to one child.)

 As with all binary trees, a node's in-order successor
is the left-most child of its right subtree. This node
will have zero or one child. Delete it according to one
of the two simpler cases above.

Graph data structure

D A T A S T R U C T U R E

2 N D S T A G E

Directed and Undirected Graphs

 A graph is a mathematical structure consisting of a set of
vertices and a set of edges connecting the vertices.
Formally, we view the edges as pairs of vertices; an edge
(v, w) connects vertex v with vertex w. We write G = (V,E)
to denote that G is a graph with vertex set V and edge set E.

 A graph G = (V,E) is undirected if for all vertices v,w Є V
we have (v,w) Є E if, and only if, (w, v) Є E, that is, if all
edges go both ways. If we want to emphasise that the edges
have a direction, we call a graph directed. For brevity, a
directed graph is often called a digraph, and an undirected
graph is simply called a graph. We shall not use this
convention here; for us `graph‘ always means `directed or
undirected graph'.

 When drawing graphs, we represent a vertex by a
point or circle containing the name of the vertex, and
an edge by an arrow connecting two vertices. When
drawing undirected graphs, instead of drawing two
arrows (one in each direction) between all vertices,
we just draw one line connecting the vertices.

 Figure shows a drawing of the (directed)
graph G = (V,E) with

vertex set

V ={ 0,1,2, 3, 4, 5, 6}

and edge set

E = {(0, 2), (0, 4), (0, 5), (1; 0), (2,1), (2, 5),
(3, 1), (3, 6), (4, 0), (4, 5), (6, 3), (6, 5)}

Use of graph

 Graphs are a useful mathematical model for
numerous .real life. problems and structures. Here
are a few examples:

 Airline route maps:

Vertices represent airports, and there is an edge from
vertex A to vertex B if there is a direct flight from the
airport represented by A to the airport represented
by B.

 Road Maps.

Edges represent streets and vertices represent
crossings.

 Electrical Circuits.

 Vertices represent diodes, transistors, capacitors,
switches, etc., and edges represent wires connecting
them.

 Computer Networks.

 Vertices represent computers and edges represent
network connections (cables) between them.

 The World Wide Web.

Vertices represent webpages, and edges represent
hyperlinks.

 Flowcharts.

 A flowchart illustrates the flow of control in a
procedure. Essentially, a flowchart consists of boxes
containing statements of the procedure and arrows
connecting the boxes to describe the flow of control.
In a graph representing a flowchart, the vertices
represent the boxes and the edges represent the
arrows.

Data structures for graphs

 Let G = (V,E) be a graph with n vertices. We assume
that the vertices of G are numbered 0, …., n - 1 in
some arbitrary manner.

The adjacency matrix data structure

 For example, the adjacency matrix for the graph in
Figure

The adjacency list data structure

 The adjacency list representation of a graph G with
n vertices consists of an array vertices with n
entries, one for each vertex. The entry for vertex v is
a list of all vertices w such there is an edge from v to
w. We make assumptions on the order in which the
vertices adjacent to a vertex v appear in the
adjacency list, and our algorithms should work for
any order.

 shows an adjacency list representation of the
graph in Figure

Traversing Graphs

 Most algorithms for solving problems on graphs
examine or process each vertex and each edge of the
graph in some particular order. The skeleton of such
an algorithm will be a traversal of the graph, that is,
a strategy for visiting the vertices and edges in a
suitable order.

 Breadth-first search (BFS) and depth-first search
(DFS) are two traversals that are particularly useful.
Both start at some vertex v and then visit all vertices
reachable from v (that is, all vertices w such that
there is a path from v to w).

 If there are vertices that remain unvisited, that is, if
there are vertices that are not reachable from v, then
BFS and DFS pick a new vertex v and visit all vertices
reachable from v. They repeat this process until they
have finally visited all vertices.

Breadth-first search

 A BFS starting at a vertex v first visits v, then it visits
all neighbours of v (i.e. ,all vertices w such that there
is an edge from v to w), then all neighbors of the
neighbors that have not been visited before, then all
neighbors of the neighbors of the neighbors that
have not been visited before, et cetera.

 For example, a BFS of the graph in Figure shown
bellow starting at vertex 0 would visit the vertices
in the following order:

 0, 2, 5, 4, 1

 It first visits 0, then the neighbours 2; 5; 4 of 0. Next
are the neighbours of 2, which are 1 and 5. Since 5 has
been visited before, only 1 is added to the list. All
neighbours of 5, 4, and 1 have already been visited, so
we have found all vertices that are reachable from 0.
Note that there are other orders in which a BFS
starting at 0 may visit the vertices of the graph, because
the neighbours of 0 may be visited in a different order.
An example is 0; 5; 4; 2; 1. The vertices 3 and 6 are not
reachable from 0, so we have to start another BFS, say
at 3. It first visits 3 and then 6.

 It is important to realize that the traversal heavily
depends on the vertex we start at. For example, if we
start a BFS at vertex 6 it will visit all vertices in one
sweep, maybe in the following order:

 6, 5, 3, 1, 0, 2, 4

 Other possible orders are 6, 3, 5, 1, 0, 2, 4 and 6, 5, 3,
1, 0, 4, 2 and 6, 3, 5, 1, 0, 4, 2.

Algorithm BFS

Depth-first search

 A DFS starting at a vertex v first visits v, then some
neighbour w of v, then some neighbour x of w that
has not been visited before, et cetera. Once it gets
stuck, the DFS backtracks until it finds the first
vertex that still has a neighbour that has not been
visited before. It continues with this neighbour until
it has to backtrack again.

 Eventually, it will visit all vertices reachable from v.
Then a new DFS is started at some vertex that is not
reachable from v, until all vertices have been visited.

 a DFS in the graph of Figure shown starting at 0 may
visit the vertices in the order

 0, 2, 1, 5, 4

 After it has visited 0; 2; 1 the DFS backtracks to 2,
visits 5, then backtracks to 0, and visits 4. A DFS
starting at 0 might also visit the vertices in the order
0; 4; 5; 2; 1 or 0; 5; 4; 2; 1 or 0; 2; 5; 1; 4. As for BFS,
this depends on the order in which the neighbours of
a vertex are processed.

Algorithm dfsFromVertex(G, v)

