Cihan University-Sulaimany
College of-Administration and Financial Sciences

Department -Business Administration \&Accounting

Quantitative Methods
2and Stage
Prof.Dr.Obaid Mahmood Mohsin
Academic Year: 2023-2024

Department of - Business Administration
College of - Administration and Financial
Sciences
University of Cihan- Sulaimaniya
Subject: Quantitative Methods
Course Book - Year -2023-2024
Lecturer's name Prof.Dr.Obaid Mahmmood Mohsin

Academic Year: 2023-2024

Course Book

1. Course name	Quantitative Methods
2. Lecturer in charge	Prof.Dr.Obaid Mahmmood Mohsin
3.Department/College	Business Administration- Administration and Financial Sciences College
4. Time (in hours) per week	2hours per week
5. Office hours	4 hours morning
6. Course code	BA 32116
7. Teacher's academic profile	
8. Keywords	
9. Course overview: Concepts covered in this course include Linear Programming, Artificial Variable Technique, Graphical method, Simplex Method . At the end of this course the student will:- 1-understand what is meant of problem solving and decision making and quantitative methods. 2. understand what is meant by quantitative analysis methods and how to formulate the linear programming problems. 3. learn how to constructing a model to represent the systems. 4 learn how to deriving a solution from the model and put the solution to work. 5. learn how use a graphical method to solve two-variable L.P. Problems. 6. learn how use a simplex method to solve two-variable L.P. Problems and more than two-variabl problems.	
7. understand the artificial variable technique, Big-M, and setting up the dual problems.	
10. Course objective:	
The main objective of this course is to give student a good theoretical and practical knowledge of	
quantitative analysis methods. The student will take courses from a variety of technique that focus	
extensively on statistical methodology, mathematical modeling, and computer implementation	
issues.	
The student will be able to solve and interpret correctly the solutions of a problems and recognize	
the situations where QM techniques can be used as decision making tools and to interpret	
correctly the conclusions which can be derived using these techniques.	

11. Student's obligation

Mid examination $30 \%+10 \%$ for homework -final examination 60%

12. Forms of teaching

Teaching and Learning Strategy Contact hours: 3 theoretical weekly hours with discussions +Assignments
13. Assessment scheme Midterm Examination

30 \% Paper, Quiz, Project

10\%
Final Practical Examination
**\%
Final theory exam 60\%

14. Student learning outcome:

The main objective of this course is to give student a good theoretical and practical knowledge of quantitative analysis methods. The student will take courses from a variety of technique that focus extensively on statistical methodology, mathematical modeling, and computer implementation issues. The student will be able to solve and interpret correctly the solutions of a problems and recognize the situations where QM techniques can be used as decision making tools and to interpret correctly the conclusions which can be derived using these techniques.

15. Course Reading List and References:

Text Books and References-
-Text books: Hamdy, A.Taha; Operations Research an Introduction, $8^{\text {th }}$ Edition, Pearson Education Inc., 2007.

Reference books: Gupta, P. K. \& D. S. Hira; Operations Research, $2^{\text {nd }}$ Edition,S. Chand \& Company (Pvt) Ltd, Ram Nagar, New Delhi, 1987
16. The Topics:

Lecture No	Topic
Week/1+2+3	Chapter 1: Basics of Quantitative Methods
Week/ 4+5 +6+7	Chapter 2: Linear Programming:
Week/ $8+11$	Chapter 3 :Graphical Solution of Two-Variable L.P. Problems
Week/9+10	Mid Examination
Week/12+13+14	Chapter 4: Simplex Method:
Week/ $15+16$	Final Examination

17. Peer review

Main Lecturer
Head of The Department

Department of - Accounting
College of - Administration and Financial
Sciences
University of Cihan- Sulaimaniya
Subject: Quantitative Methods
Course Book - Year -2023-2024
Lecturer's name Prof.Dr.Obaid Mahmmood Mohsin

Academic Year: 2023-2024

Course Book

1. Course name	Quantitative Methods
2. Lecturer in charge	Prof.Dr.Obaid Mahmmood Mohsin
3. Department/ College	Accounting- Administration and Financial Sciences College
4. Time (in hours) per week	3 hours per week
5. Office hours	4 hours morning
6. Course code	ACC32116
7. Teacher's academic profile	
8. Keywords	
9. Course overview: Concepts covered in this course include Linear Programming, Artificial Variable Technique, Graphical method, Simplex Method. At the end of this course the student will:- 1. understand what is meant of problem solving and decision making and quantitative analysis methods. 2. understand what is meant by quantitative analysis methods. and how to formulate the linear programming problems. 3. learn how to constructing a model to represent the systems. 4 . learn how to deriving a solution from the model and put the solution to work. 5. learn how use a graphical method to solve two-variable L.P. Problems. 6. learn how use a simplex method to solve two-variable L.P. Problems and more than two-variable problems. 7. understand the artificial variable technique, Big-M, and setting up the dual problems.	

10. Course objective:

The main objective of this course is to give student a good theoretical and practical knowledge of quantitative analysis methods. The student will take courses from a variety of technique that focus extensively on statistical methodology, mathematical modeling, and computer implementation issues.
The student will be able to solve and interpret correctly the solutions of a problems and recognize the situations where QM techniques can be used as decision making tools and to interpret correctly the conclusions which can be derived using these techniques.

11. Student's obligation

Mid examination $30 \%+10 \%$ for homework -final examination 60%

12. Forms of teaching

Teaching and Learning Strategy Contact hours: 3 theoretical weekly hours with discussions +Assignments

13. Assessment scheme				
Midterm Examination 30	\%	Paper, Quiz, Project	10%	
Lab exam	$* * \%$	Final Practical Examination		$* * \%$
Final theory exam		60%		

14. Student learning outcome:

The main objective of this course is to give student a good theoretical and practical knowledge of quantitative analysis methods. The student will take courses from a variety of technique that focus extensively on statistical methodology, mathematical modeling, and computer implementation issues. The student will be able to solve and interpret correctly the solutions of a problems and recognize the situations where QM techniques can be used as decision making tools and to interpret correctly the conclusions which can be derived using these techniques.

15. Course Reading List and References:

Text Books and References-
-Text books:_Hamdy, A.Taha; Operations Research an Introduction, $8^{\text {th }}$ Edition, Pearson Education Inc., 2007.

Reference books:_Gupta, P. K. \& D. S. Hira; Operations Research, $2^{\text {nd }}$ Edition,S. Chand \& Company (Pvt) Ltd, Ram Nagar, New Delhi, 1987.
16. The Topics:

Lecture No	Topic
Week/1+2+3	Chapter 1: Basics of Quantitative Methods
Week/4+_5+6+7	Chapter 2: Linear Programming:
Week/8+11	Chapter 3 :Graphical Solution of Two-Variable L.P. Problems
Week/12 +13 +14	Chapter 4: Simplex Method:
Week/9+10	Mid Examination
Week- $15+16$	Final Examination

17. Peer review

Main Lecturer
Head of The Department

Quantitative Methods

CHAPTER ONE

Basics of Quantitative Analysis Methods

1-Problem solving
2- Quantitative Analysis and Decision making

- Quantitative Analysis
- Model Development 2023-2024

Prof.Dr. Obaid Mahmmood Mohsin

Problem Solving

The problem -solving process involves the following seven steps:
1- Identify and define the problem.
2- Determine the set of alternative solutions.
3- Determine the criterion or criteria that will be used to evaluate the alternatives.

4- Evaluate the alternatives.
5- Choose an alternatives.
6- Implement the selected alternative.
7- Evaluate the results to determine whether a satisfactory solution has been obtained.

Decision Making

Is the term generally associated with the first five steps of the problemsolving process. Thus, the first step of decision making is to identify and define the problem. Decision making ends with the choosing of an alternative , which is the act of making the decision.

Let us consider the following example of the decision- making process. For the moment assume that you are currently unemployed and that you would like a position that will lead to a satisfying career.
Suppose that your job search results in offers from companies in A,B,C and
D.Thus, the alternatives for your decision problem can be stated as follows :

1-Accept the position in A

2-Accept the position in B

3- Accept the position in C

4- Accept the position in D
The next step of the problem-solving process involves determining the criteria that will be used to evaluate the four alternatives.
Obviously, the starting salary is a factor of some importance.
If salary were the only criterion important to you ,the alternative selected as best would be the one with the highest starting salary.

Problems in which the objective is to find the best solution with respect to one criterion only are referred to as :

Single-criterion decision problems

Suppose that you also conclude that the potential for advancement and the location of the job are two other criteria of major importance. Thus, the three criteria in your decision problem are starting salary ,potential for advancement and job location.
Problems that involve more than one criterion are referred to as: Multi-criteria decision problems
The next step of the decision -making process is to evaluate each of the alternatives with respect to each criterion.

For example, evaluating each alternative relative to the starting.
Table (1) Data for the job evaluation decision-making problem

Alternative	Starting salary	Potential for advancement	Job location
A	48500	Average	Average
B	46000	Excellent	Good
C	46000	Good	Excellent
D	47000	Average	Good

Salary criterion is done simple by recording the starting salary for each job alternative. Evaluating each alternative with respect to the potential for advancement and the location of the job is more difficult to do, however, because these evaluations are based primarily on subjective factors that are often difficult to subjective factors that are often difficult to quantify. Suppose for now that you decide to measure potential for advancement and job location by rating each of these criteria as poor ,fair, average , good, or excellent.
The data you compile are shown in table (1)you are now ready to make choice from the available alternatives .
What makes this choice phase so difficult is that the criteria are probably not all equally important , and no one alternative is best with regard to all
criteria. Although we will present a method for dealing with situations like this one later in the next, for now let us suppose that after a careful evaluation of the data in table (1), you decide to select alternative (3), Alternative (3) is thus referred to as the decision
At this point in time, the decision-making process is complete. Example:

Let you search for a job, and you received four over letters from four companies A , B , C , D . The following data for the job evaluation decision- making problem .

Alternative	salary	Potential for advancement	Job locations
A	60000	Fair	excellent
B	55000	good	good
C	57000	excellent	average
D	62000	good	excellent

Required:
1- Identify and define the problem.
2- Determine the set of alternative solutions
3- Determine the criterion or criteria that will be used to evaluate the alternatives.

4-if you have one criterion ,what is your decision?
5- if you have two criteria , what is your decision?
6 - if you have three criteria , what is your decision?

In summary

We see that this process involves five steps
1-Define the problem.
2-Identify the alternatives
3-Determine the criteria.
4-Evaluate the alternatives.
5-Choose an alternative.

Note that missing from list are the last two steps in the problem-solving process :implementing the selected alternative and evaluating the results to determine whether a satisfactory solution has been obtained. This omission is not meant to diminish the importance of each of these activities , but to emphasize the more limited scope of the term decision making as compared to the term problem solving. Figure (1) summarizes the relationship between these two concepts.
Figure (1) The relationship between problem solving and decision making

Quantitative Analysis And Decision making

Consider the flowchart in figure (2). Note that we combined the first three steps of the decision-making process under the heading of structuring the problem and the latter two steps under the heading analyzing the problem. Let us now consider in greater detail how to carry out the activities that make up the decision-making process.

Figure (2) A sub classification of the Decision -making process

Figure (3) shows that the analysis phase of the decision-making process may take two basic forms:

Qualitative

Quantitative

Qualitative analysis is based primarily on the manager's judgment and experience, it includes the manager's intuitive feel for the problem and is more an art than a science, if the manager has had experience with similar problems ,or if the problem is relatively simple, heavy emphasis may be placed upon a qualitative analysis.
If the manager has had little experience with similar problems, or if the problem is sufficiently complex, then a quantitative analysis of the problem can be an especially important consideration in the manager's final decision. When using the quantitative approach, an analyst will concentrate on the quantitative facts or data associated with the problem and develop mathematical expressions. Then , by using one or more quantitative
methods ,the analyst will make are commendation based on the quantitative aspects of the problem.

Figure (3) The role of qualitative and quantitative analysis

Some of the reasons why a quantitative approach might be used in the decision-making process include the following :
1-The problem is complex , and the manager cannot develop a good solution without the aid of quantitative analysis.
2-The problem is especially important (e.g.a great deal of money is involved), and the manager desires a thorough (or a complete) analysis before attempting to make a decision.
3-The problem is new, and the manager has no previous experience from which to draw.
4 -The problem is repetitive, and the manager saves time and effort by relying on quantitative procedures to make routine decision recommendations.

Quantitative Analysis

To successfully apply quantitative analysis to decision making , the analyst must work closely with the manager or user of the results.
When both the quantitative analyst and the manager agree that the problem has been adequately structured, work can begin on developing a model to represent the problem mathematically .Solution procedures can
then be employed to find the best solution for the model . This best solution for the model then becomes a recommendation to the decision maker.
The process of developing and solving models is the essence of the quantitative analysis process.

Model Development

The model which includes representations of a problem by a system of symbols and mathematical relationships or expressions.
Such models are referred to as: Mathematical models.
And are a critical part of any quantitative approach to decision making.
For example :
The total profit from the sale of a product can be determined by multiplying the profit per unit by the quantity sold.
Let $X=$ No. of units produced and sold.
$\mathrm{P}=$ The total profit-(with a profit of $10 \$$ per unit)
The mathematical model which defines the total profit be:

$$
\begin{equation*}
P=10 X . \tag{1}
\end{equation*}
$$

If we expect selling three units
Then $\quad P=(10)(3)=30 \$$
We usually find that the problem definition phase leads to a specific objective such as:

Maximization of profit or
Minimization of cost
And
Possibly a set of restrictions or constraints (such as production capacities)
The success of the mathematical model and quantitative approach will depend heavily on how accurately the objective and constraints can be expressed in mathematical equations or relationships.
The mathematical expression that defines the quantity to be maximized or minimized is referred to as the (objective function) .
For example;

Let $X=$ No, of units produced and sold each week.
Objective-----------maximize total weekly profit with profit 10\$ per unit.
--------the objective function is 10X
A production capacity constraint would be necessary-let 5 hours are required to produce each unit and 40 hours available per week.
The production capacity constraint is given by :
5X ≤ 40
$5 X=$ total time required to produce X units.
The decision problem or question is the following :
How many units of the product should be produced each week to maximize profit.
A complete mathematical model for this simple production problem is :
Maximize 10X objective function
Subject to (s.t)
$5 X \leq 40 \quad$ (constraints)
$X \geq 0$
The optimal solution of this model can be easily calculated and is given by :

$$
X=8
$$

With an associated profit of $80 \$$
This model is an example of a linear programming model.

Problems

1- Write the problem- solving steps \& decision- making steps.
2- Draw the flowchart of the relationship between problem- solving and decisionmaking.
3- Draw the flowchart of a sub classification of the decision making process.
4- Write the reasons that lead to the use of quantitative analysis of the problem of access to the decision-making process.
5- Explain: a-single-criterion decision problems.
b-multi-criteria decision problems .
6-The following data for the job evaluation decision- making problem .

Alternative	salary	Potential for advancement	Job locations
A	50000	Fair	excellent
B	45000	good	good
C	47000	excellent	average
D	52000	good	excellent

Required:
1-if you have one criterion ,what is your decision?
2 - if you have two criteria , what is your decision?
3 - if you have three criteria , what is your decision?
7-Explain: 1-quantitative analysis.
2- mathematical model.

Solutions

a-The problem -solving process or steps are:

1-Identify and define the problem.
2-Determine the set of alternative solutions.
3-Determine the criterion or criteria that will be used to evaluate the alternatives.

4 -Evaluate the alternatives.
5-Choose an alternatives.
6-Implement the selected alternative.
7-Evaluate the results to determine whether a satisfactory solution has been obtained.

b- The _Decision Making steps are :

1- Identify and define the problem.
2- Determine the set of alternative solutions.
3- Determine the criterion or criteria that will be used to evaluate the alternatives.
4- Evaluate the alternatives.
5- Choose an alternatives

2- See figure (1)
3- See figure (2)
4- Some of the reasons why a quantitative approach might be used in the decision-making process include the following :
1-The problem is complex , and the manager cannot develop a good solution without the aid of quantitative analysis.
2-The problem is especially important (e.g.a great deal of money is involved), and the manager desires a thorough (or a complete) analysis before attempting to make a decision.

3-The problem is new, and the manager has no previous experience from which to draw.
4 -The problem is repetitive, and the manager saves time and effort by relying on quantitative procedures to make routine decision recommendations.

5- Problems in which the objective is to find the best solution with respect to one criterion are referred to as :

Single-criterion decision problems
Problems that involve more than one criterion are referred to as:
Multi-criteria decision problems

6- (i)for salary-D -for potential for advancement-C-for job location-A or D
(ii) for salary and potential for advancement -C or D for salary and job location ---D
For job location and potential for advancement ---D
(iii) D

7-_Quantitative Analysis: The process of developing and solving models is the essence of the quantitative analysis process .

Mathematical models. The model which includes representations of a problem by a system of symbols and mathematical relationships or expressions .Such models are referred to as: Mathematical models.

Quantitative Methods

CHAPTER TWO
Linear Programming
-Define Linear programming

- = linear
- = programming
-Uses linear programming
- Linear programming assumptions
-Formulation of linear programming model
-General mathematical formulation of linear programming model
-The standard form of the linear programming model.
-Examples of applications of linear programming
-Problems

Prof.Dr. Obaid Mahmmood Mohsin

2023-2024

Linear Programming

Def:
Linear programming: is a problem solving approach developed to help managers make decisions.

Linear programming: Mathematical method used to determine the best allocation of rare or limited resources. Such as workers, raw materials, and crude and hours of work at the facility that would help the administration achieve its goal either reduce the cost or profit maximization, that there are some constraint.

Programming: Choosing and applying the best possible solutions to the various problems from a range of possible solutions in accordance with the possibilities of the limited resources available in the facility and the existence of restrictions that restrict the use of these resources for the purpose of achieving the administration's goal.

Linear : Means that the constraints of the problem and the objective function are linear functions as well as the relationships that bind variables are first degree.

Uses Linear Programming:

Linear Programming Assumptions:

1-The linear programming approach is deterministic technique and that means:
-Amounts of available resources $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots \ldots . . ., \mathrm{b}_{\mathrm{m}}$ and

- Contribution per unit of activity in the objective function and:
--Requirements per unit of resource activities

All be known and constant.

2-The validity and accuracy of the data used by the administration to build a linear programming model.

3-Decision variables Xj .($\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ be \geq zero.
Decision variables: unknowns that we want to determine their values in the solution phase model and thus be relied upon in decision making.

4- The presence of more than one alternative (decision variable) to solve the problem.

Elements of linear programming model :

1- Decision variables and parameters .
Parameters: fixed values in the model; such as requirements per unit a particular activity of a particular resource.

2-Constraints : Represent mathematical expression of constraints of the problem under study. Constraints be as a linear equations or linear inequalities.

For example:

If $A=$ available amount of raw materials, it represents the upper limit that can be used .

If X_{1}, X_{2} Decision variables
Then
$a_{11} X_{1}=$ what you need per unit of the first product X_{1} of the raw material A.
$a_{12} X_{2}=$ what you need per unit of the second product X_{2} of the raw material A. so we can write the constraint as follow:

$$
a_{11} X_{1}+a_{12} X_{2} \leq A
$$

and:

If the model includes another constraint s.t. the number of hours available for the production X_{1} and X_{2}
per unit of product X_{1}, we need to $a_{21} X_{1}$ (the number of hours weekly) per unit of product X_{2}, we need to $a_{22} X_{2}$ (the number of hours weekly) we can write this constraint for X_{1} and X_{2} as:

$$
a_{21} X_{1}+a_{22} X_{2} \leq B
$$

3-Objective function

If C_{1}, C_{2}, the profit per unit of X_{1} and X_{2}
Then the objective function to maximize profit be
Maximize $\quad(Z)=C_{1} X_{1}+C_{2} X_{2}$
4-The decision variables X_{1}, X_{2},be ≥ 0

Formulation of Linear Programming model :

1- Determination decision variables.
2- = objective function which be linear form and include be maximize profit or minimize cost .
3- $=\quad$ the constraints as a questions or inequalities.

General Mathematical Formulation of Linear Programming Model:

Let
$X_{j}, \quad(j=1,2, \ldots \ldots, n)$ decision variables.
$\mathrm{a}_{\mathrm{ij}}=$ Technical coefficients
$=$ The amount of resources i needed per unit of activity j .
$C_{j} \quad=$ profit per unit of activity j.
$b_{i}=$ available amount of supplier (i).
The mathematical Formulation of linear programming:
Maximize or minimize

$$
\begin{equation*}
Z=C_{1} X_{1}+C_{2} X_{2}+\ldots \ldots+C_{n} X_{n} . \tag{1}
\end{equation*}
$$

Subject to the constraints (s.t)

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots \ldots . . .+a_{1 n} x_{n} \leq=\geq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots \ldots \ldots .+a_{2 n} x_{n} \leq=\geq b_{2}
\end{aligned}
$$

$$
a_{m 1} X_{1}+a_{m 2} X_{2}+\ldots+a_{m n} X_{n} \leq=\geq b_{m}
$$

and:

$$
X_{1} \geq 0, X_{2} \geq 0, \ldots . . ., X_{n} \geq 0
$$

X_{j} The variables required find values .
$a_{i j}, b_{i}, c_{j}$, known constants.
from eq. (1)
$\mathrm{C}_{1} \mathrm{X}_{1}$ =first contribution activity .
we can write the general mathematical formulation of linear programming model as follow:
maximize (or minimize) $Z=\sum C_{j} X_{j}$
s.t.

$$
\begin{aligned}
& \sum a_{i j} x_{j} \leq=\geq b_{i} \quad, i=1,2, \ldots . ., m \\
& x_{j} \geq 0 \quad, j=1,2, \ldots ., n
\end{aligned}
$$

The Standard Form of the Linear Programming Model :

Linear programming problem can be converted into the standard form, its characteristics:

1- All constraints which be \geq or \leq must be equation marking equality.
2- The values of right side be no negative.
3- Objective function be maximize or minimize .
4- All the variables (decision variables) ≥ 0.
Note: To write the linear programming model in standard form :
(i) In the case that the constraint of type (\leq) can be transferred to the equation by adding slack variable to left side .
(ii) In the case that the constraint of the type (\geq) can be transferred to the equation by subtracting surplus variable from left side .

We adding artificial variable to left side for the purpose of starting basic solution .

Examples of Applications of Linear Programming:

Ex;1-
A factory produce two type of products ($\mathrm{P}_{1}, \mathrm{P} 2$) using (3) types of machines (M_{1} , $\mathrm{M}_{2}, \mathrm{M}_{3}$).

The production $\left(P_{1}\right)$ must pass through machines $\left(M_{1}, M_{2}\right)$.
The production (P_{2}) must pass through machines (M_{1}, M_{2}, M_{3}).
The following table represents the time it takes to produce one unit of each product per hour.

	M_{1}	M_{2}	M_{3}
P_{1}	0.25	0.4	0
P_{2}	0.5	0.2	0.8

The every machine from the machines must operate at the most (40) hours per week.

If you know that the factory gets a profit (2) \$ per unit of $\left(\mathrm{P}_{1}\right),(3)$ per unit of (P_{2}).

Required:
The formulation of a linear programming model to calculate the number of units to be produced from each product in the week to maximize profit factory.

Solution: -The example include determining the number of units produced from both productions $\mathrm{P}_{1}, \mathrm{P}_{2}$ a week (decision variables) using (3) types of machines M_{1}, M_{2}, M_{3} (constraints) for the purpose of profit maximization (objective function)

1- Determine decision variables ($\mathrm{X}_{1}, \mathrm{X}_{2}$)
2- Determine the constraints:
(i) $0.25 \mathrm{X}_{1}+0.5 \mathrm{X}_{2} \leq 40$
(ii) $0.4 \mathrm{X}_{1}+0.2 \mathrm{X}_{2} \leq 40$
(iii) $0.8 \mathrm{X}_{2} \leq 40$

And
$X_{1} \geq 0, X_{2} \geq 0$
3-Determine objective function Z
Maximize $\mathrm{Z}=2 \mathrm{X}_{1}+3 \mathrm{X}_{2}$
Where
$2 \mathrm{X}_{1}=$ The contribution of the first product in profit.
$3 X_{2}=$ The contribution of the second product in profit.

The solution can be rearranged personal decision variables first ,then the objective function and finally constraints.
\qquad
$X_{1}=$ The number of units of the product $\left(P_{1}\right)$ produced in week.
$X_{2}=$ The number of units of the product $\left(\mathrm{P}_{2}\right)$ produced in week.
Maximize $Z=2 X_{1}+3 X_{2}$
Subject to : s.t.:

$$
\begin{aligned}
& 0.25 \mathrm{X} 1+0.5 \mathrm{X} 2 \leq 40 \\
& 0.4 \mathrm{X} 1+0.2 \mathrm{X} 2 \leq 40 \\
& 0.8 \mathrm{X} 2 \leq 40 \\
& \mathrm{X} 1 \geq 0, \mathrm{X} 2 \geq 0
\end{aligned}
$$

Example 2-

One of the companies planning production of household items that need to be workers and raw materials for their production, that this company is making (3)of these type of household items A, B, and C . The marketing department at this company provide us with the following statements:

Production household items			
A	B	C	
3	4	2	Works(h/unit)
6	4	3	Raw materials(kg/unit)
10	8	12	Profit(\$/unit)

Available from working hours to produce three items not exceed (20)hours aday, as well as a mount of raw materials that go into the production of items should not exceed (140) kg/day.

Required:

The formulation of a linear programming model to determine the daily production of the three household items, note that the company's goal is to get the greatest possible profit.

Solution:

1- Define the decision variables X_{A}, X_{B}, X_{C}
s.t.
$X_{A}=$ Daily production amount of item A.
$X_{B}=$ Daily production amount of item B.
$X_{C}=$ Daily production amount of item C.
Where these variables represent the decision variables to be determined.

2-Determine the objective function
Maximize $Z=10 X_{A}+8 X_{B}+12 X_{C}$

3-Determine the constraints.
Note the presence of two constraints are workers and raw materials .
$3 X_{A}+4 X_{B}+2 X_{C} \leq 20 \quad$ constraint of the working hours .
$6 X_{A}+4 X_{B}+3 X_{C} \leq 140$ constraint of the raw materials .
$X_{A} \geq 0, X_{B} \geq 0, X_{C} \geq 0 \quad$ constraint of the variables which must
be \geq zero

Example 3-

A person follow a specific diet for the purpose of obtaining at least (2000) calories per day and (100) units per day of different food (carbohydrates ,proteins ,fats)needed to do various day -to day events. If you know that the person can buy (5) of food items (A, B, C, D, E) and assigned each of them (500, 300, $700,150,800$) ID/kg respectively.
The following table shows what every type of food calories and various food,

Food items	A	B	C	D	E
calories	300	250	400	200	50
Units of various food	8	3	4	7	6

Required:

The formulation of a linear programming model to determine the quantity bought from the five food items which cost less possible to satisfy the needs of person of calories.

Solution:

Decision variables (types of food)-A , B , C , D , E , Constraints -calories (quantities of various items)

Objective function (less the cost of calories required) that are of type minimize.
$\mathrm{Xj} \quad \mathrm{j}=1,2,3,4,5 \quad(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}) \quad$ Decision variables, where:
$X 1=$ number of units from food A.
$X 2=$ number of units from food B
X3 = = $===C$
$\mathrm{X} 4=====\quad=\mathrm{D}$
$\mathrm{X} 5==\quad=\quad=\quad \mathrm{E}$
Objective function
minimize $\quad Z=500 X_{1}+300 X_{2}+700 X_{3}+150 X_{4}+800 X_{5}$
where:
$500 X_{1}$ first class food contribution in cost
$300 X_{2}$ second class food contribution in cost.
s.t.:
$300 X_{1}+250 X_{2}+400 X_{3}+200 X_{4}+50 X 5 \geq 2000$
$8 X_{1}+3 X_{2}+4 X_{3}+7 X_{4}+6 X_{5} \geq 100$
$X_{j} \geq 0 \quad, j=1,2,3,4,5$.

Example 4-:

A farmer has (300) acres of farmland to exploit agriculture (4) types of crops (tomato, corn , potatoes ,beans). If you know :
Each acre planted tomato needs (1) workday and (1000) ID to cover various expenses.
Each acre planted corn needs (2) workday and (1500) ID to cover various expenses.
Each acre planted potatoes needs (3) workday and (2000) ID to cover various expenses.
Each acre planted beans needs (4) workday and (2500) ID to cover various expenses.
Profit derived from farming of each acre of land under crops four (40,20 ,70,50 lID/kg
The total number of working days, is (340) days a year .
Total capital available for farmer is (100000)ID.

Required:

Formulation a linear programming model to determine how to distribute the four crops on area to achieve the greatest possible profit .

Solution:

Decision variables : number of acres planted for crops

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{j}} \quad, \mathrm{j}=1,2.3,4, \text { where: } \\
& \mathrm{X} 1=\text { number of acres planted for tomato. } \\
& \mathrm{X} 2 \text { =number of acres planted for corn. } \\
& \mathrm{X} 3 \text { =number of acres planted for potatoes. } \\
& \text { X4 = number of acres planted for beans. }
\end{aligned}
$$

Constraints :
working days
various expenses
number of acres of farmland
objective function :
achieve the greatest possible profit .
maximize $Z=40 X_{1}+20 X_{2}+70 X_{3}+50 X_{4}$
s.t.
$1000 X_{1}+1500 X_{2}+2000 X_{3}+2500 X_{4} \leq 100000$
$\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}=300$
$\mathrm{X}_{1}+2 \mathrm{X}_{2}+3 \mathrm{X}_{3}+4 \mathrm{X}_{4} \leq 340$
$X_{1}, X_{2}, X_{3}, X_{4}, \geq 0$

Example 5:

A computer center manager employment a number of programmers and systems analysts. He wants to determine the daily working hours by both programmers and systems analysts in order to maximize profit.
If you know:
Each programmer receive (5)\$ per hour.
Each systems analyst receive (10)\$ per hour .
And:
The weekly hours of programmer no more than (30) hours, while the number of hours of programmers and systems analysts do not exceed (80) hours per week.
Required:
Formulating a linear programming model to determine the number of programmers and system analysts needed by the computer center for the purpose of profit maximization.

Solution:

Z objective function (profit)
X_{1} number of programmers
X_{2} number of system analysts
$\mathrm{X}_{1}, \mathrm{X}_{2}$, decision variables

Maximize $Z=5 X_{1}+10 X_{2}$
s.t.

$$
\begin{aligned}
& X_{1} \leq 30 \\
& X_{1}+X_{2} \leq 80 \\
& X_{1}, X_{2} \geq 0 \quad \text { and integers }
\end{aligned}
$$

Example -6:

A hospital is running a number of nurses to carry out nursing. The following table shows the nurses time during the day and time to engage each period during the day and the number of nurses employed in each period .

period	Time to engage	The number of nurses(minimum)
1	8 a.m-12 p.m	80
2	12 p.m -4 p.m	60
3	4 p.m-8 p.m	40
4	8 p.m -12 mid night	30
5	12 mid night-4 a.m	20
6	4 am -8 am	10

Number of working hours of the nurses in each period must be at least (8) continuous hours per day. Hospital administration want to run the lowest number of nurses during the day so that fill the need for nursing services.

Required :

Formulating a linear programming model to determine the number of nurses
Solution:
 (decision variables)

Minimize

$$
Z=X_{1}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}
$$

s.t.

$$
\begin{gathered}
x_{6}+X_{1} \geq 80 \\
x_{1}+X_{2} \geq 60 \\
x_{2}+x_{3} \geq 40 \\
x_{3}+X_{4} \geq 30 \\
x_{4}+x_{5} \geq 20 \\
x_{5}+X_{6} \geq 10 \\
x_{j} \geq 0 \quad, j=1,2,3,4,5,6-- \text { and integers }
\end{gathered}
$$

Example-7:

A factory produces coal with certain specifications under which fit no more than (0.05%) of the phosphorus and (4.25%) of ash. The table below shows the grades of (3) types of coal and phosphorus ratios and ash for each grade ,as well as costs for each grade .

grade	Phosphorus ratio \%	Ash ratio \%	Cost \$/ton
A	0.08	3	20
B	0.05	5	15
C	0.03	4	10

Required:

Find the best max ratio of three grades of coal, which costs the least we can.
Solution:

$$
X_{1}, X_{2}, X_{3} \text { decision variables - (grades of three types of coal) }
$$

Minimize $Z=20 X_{1}+15 X_{2}+10 X_{3}$
s.t.

$$
\begin{aligned}
& 0.08 X_{1}+0.05 X_{2}+0.03 X_{3} \leq 0.05 \\
& 3 X_{1}+5 X_{2}+4 X_{3} \leq 4.25 \\
& X_{1}+X_{2}+X_{3}=1 \\
& X_{1}, X_{2}, X_{3} \geq 0
\end{aligned}
$$

Problems

1- A manufacturing company is engaged in producing three types of products: A, B, and C. The production department produce, each day, components sufficient to make 50 units of $A, 25$ units of B, and 30 units of C. The management is confronted with the problem of optimizing the daily production of products in assembly department where only 100 man-hours are available daily to assemble the products. The additional information is given in the table. The company has a daily order commitment for 20 units of product A and a total of 15 units of product B and C .

Type of product	Profit contribution per unit of product	Assembly time per product (hrs)
A	12	0.8
B	20	1.7
C	45	2.5

Formulate this problem as an LP model so as to maximize the total profit.

2- A firm produces three products. These products are processed on three different machines. The time required to manufacture one unit of each of the three products and the daily capacity of the three machines are given in the table

Machine	Time per unit (minutes)			Machine capacity(minutes /day)
	Product 1	Product 2	Product 3	2
M1	2	3	2	440
M2	4	-	3	470
M3	2	5	-	430

It is required to determine the daily number of units to be manufactured for each product. The profit per unit for product 1,2 and 3 is Rs. 4 , Rs. 3 andRs. 6 respectively. It is assumed that all the amounts produced are consumed in the market. Formulate the mathematical model of linear programming that will maximize the daily profit.

3- A firm produces an alloy having the following specifications:
(i) Specific gravity ≤ 0.98,
(ii) Chromium $\geq 8 \%$
(iii) Melting point $\geq 450^{\circ} \mathrm{C}$

Raw materials A, B, and , C having the properties shown in the table can be used to make the alloy.

property	Properties of raw material		
	A	B	C
Specific gravity	0.92	0.97	1.04
chromium	7%	13%	16%
Melting point	$440^{\circ} \mathrm{C}$	$490^{\circ} \mathrm{C}$	$480^{\circ} \mathrm{C}$

Cost of the various raw materials per ton are : Rs. 90 for A,Rs. 280 for B and Rs. 40 for C . Formulate the LP model to find the proportion in which A, B, and C be used to obtain an alloy of desired properties while the cost of raw materials is minimum.
4- A firm manufactures three products A, B, and C. Time to manufacture product A is twice that for B and thrice that for C and if the entire labor is engaged in making product A, 1600 units of this product can be produced . These products are to be produced in ratio $3: 4: 5$. There is demand for at least 300,250 ,and 200 units of products A, B, and C and the profit earned per unit is Rs. 90 , Rs. 40 , and RS. 30 respectively .

Raw material	Requirement per unit of product (kg)			Total availability (kg)
	A	B	C	
P	6	5	2	5000
Q	4	7	3	6000

Formulate the problem as a linear programming problem.
5-Acompany has two plants, each of which produces and supplies two products, A , and , B. The plants can each work up to 16 hours a day .In plant , 1 ,it takes three hours to prepare and pack 1000 gallons of A and one hour to prepare and
pack one quintal of B. In plant 2, it takes two hours to prepare and pack 1000 gallons of A , and Rs. 28000 to prepare and pack a quintal of B, Whereas these costs are Rs. 18000 and Rs. 26000 respectively in plant 2 . The company is obelized to produce daily at least 10 thousand gallons of A and 8 quintals of B.

Formulate this problem as an LP model to find out as to how the company should organize its production so that the required amounts of the two products be obtained at minimum cost .

6-An electronic company is engaged in the production of two components C_{1} and C_{2} used in radio set. Each unit of C_{1} costs the company Rs. 5 in wages and Rs. 5 in material , while each of C_{2} costs the company Rs. 25 in wages and Rs. 15 in material . The company sells both products on one-period credit terms, but the company's labor and material expenses must be paid in cash. The selling price of C_{1} is Rs. 30 per unit and of C_{2} it is Rs. 70 per unit. Because of the strong monopoly of the company for these components, it is assumed that the company can sell at the prevailing prices as many units as it produces. The company's production capacity is ,however, limited by two consideration. First , at the beginning of period 1 , the company has an initial balance of Rs. 4000 (cash plus bank credit plus collections from past credit sales). Second , the company has available in each period 2000 hours of machine time and 1400 hours of assembly time. The production of each C_{1} requires 3 hours of machine time and 2 hours of assembly time, whereas the production of each C_{2} requires 2 hours of machine time and 3 hours of assembly time .

Formulate this problem as an LP model so as to maximize the total profit to the company.

7-An oil company produces two grades of gasoline P and Q which it sells at Rs. 30 and Rs. 40 per liter. The company can buy four different crude oils with the following constraints and costs :

Crude oil	constraints			Price/litre(Rs.)
	A	B	C	
1	0.75	0.15	0.10	20.00
2	0.20	0.30	0.50	22.50
3	0.70	0.10	0.20	25.00
4	0.40	0.10	0.50	27.50

Gasoline P must have at least 55 per cent of constituent A and not more than 40 per cent of C. Gasoline Q must not have more than 25 per cent of C. Determine how the crudes should be used to maximize the profit.

8-
A company sells two different products A and B, making a profit of Rs. 40 and RS .30 per unit on them ,respectively. They are produced in a common production process and are sold in two different markets. The production process has a total capacity of 30000 man-hours. It takes three hours to produce a unit of A and one hour to produce a unit of B. The market has been surveyed and company official feel that the maximum number of units of A that can be sold is 8000 units and that of B is 12000 units .Subject to these limitations, products can be sold in any combination. Formulate this problem as an LP model to maximize profit .

9-
The manager of an oil refinery must decide on the optimal mix of two possible blending processes of which the input and output per production run are given as follow :

Process(units)	Input (units)		Out put	
	Crude A	Crude B	Gasoline X	Gasoline Y
1	5	3	5	8
2	4	5	4	4

The maximum amount available of crude A and B are 200 units and 150 units, respectively. Market requirements show that at least 100 units of gasoline X and

80 units of gasoline Y must be produced. The profit per production run from process 1 and process 2 are Rs. 300 and Rs. 400 , respectively .

Formulate this problem as an LP model to maximize profit .
10-
Vitamins A and B are found in food F_{1} and F_{2}. One unit of food F_{1} contains three units of vitamin A and four units of vitamin B. One unit of food F_{2} contains six units of vitamin A and three units of vitamin B. One unit of food F_{1} and F_{2} cost Rs. 4 and 5 , respectively. The minimum daily requirement (for a person)of vitamins A and B is 80 and 100 units ,respectively. Assuming that anything in excess of the daily minimum requirement of A and B is not harmful.

Formulate this problem as an LP model to find out the optimum mixture of food F_{1} and F_{2} at the minimum cost which meet the daily minimum requirement of vitamin A and B.

CH-2
 SOLUTIONS

1-
The data of the problem is summarized as follow:

Resources/constraints	Product type			total
	A	B	C	
Production capacity (units)	50	25	30	
Man-hours per unit	0.8	1.7	2.5	100
Order commitment (units)	20	15	15	
Profit contribution (Rs/units)	12	20	45	

Decision variables : let X_{1}, X_{2}, and $X_{3},=$ number of units of products A, B, and C to be produced respectively.

The LP model:
Maximize(total profit) $\mathrm{Z}=12 \mathrm{X}_{1}+20 \mathrm{X}_{2}+45 \mathrm{X}_{3}$
s.t.
(i) labor and materials constraints
$0.8 \mathrm{X}_{1}+1.7 \mathrm{X}_{2}+2.5 \mathrm{X}_{3} \leq 100$
$X_{1} \leq 50$
$X_{2} \leq 25$
$X_{3} \leq 30$
$X_{1}, X_{2}, X_{3}, \geq 0$
(ii) order commitment constraints
$X_{1} \geq 20$
$X_{2}+X_{3} \geq 15$

2-

Decision variables : let X_{1}, X_{2} and $X_{3}=A m o u n t$ (quantity) of product 1,2 , and 3 to be manufactured ,respectively.

The LP model
Maximize (total profit) $\quad Z=4 X_{1}+3 X_{2}+6 X_{3}$
S.t.
(i) $\quad 2 \mathrm{X}_{1}+3 \mathrm{X}_{2}+2 \mathrm{X}_{3} \leq 440$
(ii) $\quad 4 X_{1}+0 X_{2}+3 X_{3} \leq 470$
(iii) $\quad 2 X_{1}+5 X_{2}+0 X_{3} \leq 430$

And

$$
X_{1}, X_{2}, X_{3} \geq 0
$$

3-
decision variables : let X_{1}, X_{2} and $X_{3}=$ percentage contents of raw materials A, B ,and , C, to be used for making the alloy respectively .

The LP model
Minimize (total cost) $Z=90 X_{1}+280 X_{2}+40 X_{3}$
s.t.

$$
\begin{gathered}
0.92 X_{1}+0.97 X_{2}+1.04 X_{3} \leq 0.98 \text { (specific gravity) } \\
440 X_{1}+490 X_{2}+480 X_{3} \geq 450 \text { (melting point) } \\
7 X_{1}+13 X_{2}+16 X_{3} \geq 8 \text { (chromium percentage) } \\
X_{1}+X_{2}+X_{3}=100 \text { (percentage contents) }
\end{gathered}
$$

And

$$
X_{1}, X_{2}, X 3 \geq 0
$$

4-

Decision variables : let X_{1}, X_{2}, and , $X_{3}=$ number of units of products A, B, and C, to be manufactured respectively.

Maximize (total profit) $Z=90 X_{1}+40 X_{2}+30 X_{3}$
s.t.
(i) raw material P and Q required:

P: $6 X_{1}+5 X_{2}+2 X_{3} \leq 5000$

$$
Q: 4 X_{1}+7 X_{2}+3 X_{3} \leq 6000
$$

(ii) manufacturing time required for product A, B, and C : $X_{1}+X_{2} / 2+X_{3} / 3 \leq 1600$
(iii) market demand requires : $X_{1} \geq 300, X_{2} \geq 250, X_{3} \geq 200$.
(iv) production ratio : $X_{1}: X_{2}: X_{3}:: 3: 4: 5$, i.e. $X_{1} / 3=X_{2} / 4$ and $X_{2} / 4=X_{3} / 5$
or $4 X_{1}-3 X_{2}=0$, and $5 X_{2}-4 X_{3}=0$
and $X_{1}, X_{2}, X_{3} \geq 0$

5- \quad The data of the problem is summarized as follows:

Resources /constraints	product	total	
	A	B	Availability(hrs)
Preparation time (hrs)	Plant 1:3 hrs/thousand gollons	$1 \mathrm{hr} /$ quintal	16
	Plant 2:2 hrs /thousand gallons	$1.5 \mathrm{hr} /$ quintal	16
Minimum daily production	10 thousand gallons	8 quintals	
Cost of production (Rs.)	Plant 1: 15000/thousand gallons	28000/quintals	
	Plant 2 :18000 / thousand gallons	26000 / quintals	

$\mathrm{X}_{1}, \mathrm{X}_{2}$,=quantity of product A (in 000 gallons)to be produced in plant 1 and 2 , respectively.
$X_{3}, X_{4}=$ quantity of product B (in 000 gallons)to be produced in plant 1 and 2, respectively.

The LP model
Minimize (total cost) $Z=15000 X_{1}+18000 X_{2}+28000 X_{3}+26000 X_{4}$
s.t.
(i) preparation time

$$
\begin{gathered}
3 X_{1}+X_{2} \leq 16 \\
2 X_{3}+1.5 X_{4} \leq 16
\end{gathered}
$$

(ii) minimum daily production

$$
\begin{gathered}
X_{1}+X_{2} \geq 10 \\
X_{3}+X 4 \geq 8
\end{gathered}
$$

And

$$
X_{1}, X_{2}, X_{3}, X_{4} \geq 0
$$

6-
The data of the problem is summarized as follow :

Resources /constraints	components		
	C1	C2	Total availability
Budget(Rs.)	$10 /$ unit	$40 /$ unit	Rs. 4000
Machine time	$3 \mathrm{hrs} / \mathrm{nnit}$	$2 \mathrm{hrs} / \mathrm{unit}$	2000 hours
Assembly time	$2 \mathrm{hrs} / \mathrm{unit}$	$3 \mathrm{hrs} / \mathrm{unit}$	1400 hours
Selling price	Rs. 30	Rs. 70	
Cost (wages +material)price	Rs. 10	Rs. 40	

Decision variables -let X_{1} and $X_{2}=$ number of units of components C_{1} and C_{2} to be produced, respectively.

The LP model :
Maximize (total profit) Z= Selling price -Cost price

$$
\begin{aligned}
& =(30-10) X_{1}+(70-40) X_{2} \\
& =20 X_{1}+30 X_{2}
\end{aligned}
$$

s.t.
(i) the total budget available

$$
10 X_{1}+40 X_{2} \leq 4000
$$

(ii) production time

$$
\begin{aligned}
& 3 X_{1}+2 X_{2} \leq 2000 \\
& 2 X_{1}+3 X_{2} \leq 1400
\end{aligned}
$$

And $X_{1}, X_{2}, \geq 0$

7-
LP Model Formulation
Decision variables let $X_{i j}=A m o u n t$ of crude oil (in liters) $i(=1,2,3$, and, 4$)$ to be used in making gasoline $j(=$ grades P and Q)

The LP Model :
Maximize (net profit) $\mathrm{Z}=30\left(\mathrm{X}_{1 \mathrm{p}}+\mathrm{X}_{2 \mathrm{p}}+\mathrm{X}_{3 \mathrm{p}}+\mathrm{X}_{4 \mathrm{p}}\right)+40\left(\mathrm{X}_{1 q}+\mathrm{X}_{2 q}+\mathrm{X}_{3 q}+\mathrm{X}_{4 q}\right)$
$-20\left(x_{1 p}+x_{1 q}\right)-22.50\left(x_{2 p}+x_{2 q}\right)-25\left(x_{3 p}+x_{3 q}\right)-27.50\left(x_{4 p}+x_{4 q}\right)$
$=10 x_{1 p}+7.50 x_{2 p}+5 x_{3 p}+2.50 x_{4 p}+20 x_{1 q}+17.50 x_{2 q}+15 x_{3 q}+12.50 x_{4 q}$
s.t.
$0.75 x_{1 p}+0.20 x_{2 p}+0.70 x_{3 p}+0.40 x_{4 p} \geq 0.55\left(x_{1 p}+x_{2 p}+x_{3 p}+x_{4 p}\right)$
$0.10 x_{1 p}+0.50 x_{2 p}+0.20 x_{3 p}+0.50 x_{4 p} \leq 0.40\left(x_{1 p}+x_{2 p}+x_{3 p}+x_{4 p}\right)$
$0.10 x_{1 q}+0.50 x_{2 q}+0.20 x_{3 q}+0.50 x_{4 q} \leq 0.25\left(x_{1 q}+x_{2 q}+x_{3 q}+x_{4 q}\right)$
And
$X_{1 p}, X_{2 p}, X_{3 p}, X_{4 p}, X_{1 q}, X_{2 q}, X_{3 q}, X_{4 q} \geq 0$

8-

Let $X_{1}, X_{2}=$ number of units of product A and B to be produced, respectively.
$\operatorname{Max} Z=40 X_{1}+30 X_{2}$
s.t.

$$
\begin{aligned}
& 3 X_{1}+X_{2} \leq 30000 \quad \text { (Man-hours) } \\
& X_{1} \leq 8000 ; \quad X_{2} \leq 1200 \text { (marketing) }
\end{aligned}
$$

And

$$
X_{1}, x_{2} \geq 0
$$

9- Let $X_{1}, X_{2}=$ number of productive runs of process 1 and 2 , respectively $\operatorname{Max} Z=300 X_{1}+400 X_{2}$
s.t.

$$
5 X_{1}+4 X_{2} \geq 200 ; \quad 3 X_{1}+5 X_{2} \geq 150 \quad \text { (max amount of crude } A \text { and } B \text {) }
$$

$$
5 x_{1}+4 x_{2} \geq 100 ; 8 X_{1}+4 X_{2} \geq 80 \text { (market requirement of gasoline } X \text { and } Y \text {) }
$$

And

$$
X_{1}, X_{2} \geq 0
$$

10-
Let X_{1} and $X_{2}=$ number of vitamin units purchased of food F_{1} and F_{2} respectively.

$$
\operatorname{Min} Z=4 X_{1}+5 X_{2}
$$

s.t

$$
\begin{aligned}
& 3 X_{1}+6 X 2 \geq 80 \\
& 4 X 1+3 X_{2} \geq 100
\end{aligned}
$$

And

$$
x_{1}, X 2 \geq 0
$$

Quantitative Methods

CHAPTER THREE
Solving Linear Programming model
Graphical method
-Graphical method.
-Steps solution using the graphical method.
-Types of solutions in graphical method.
-Examples
-problems

Prof.Dr. Obaid Mahmmood Mohsin
2023-2024

Solving linear programming model

Graphical Method: Suitable method to resolve the problems that contain only two variables.

Steps solution using the graphical method:

1- Write the objective function and the constraints after converted to linear equations.
2- Draw each of the constraints of chart (on the basis that the constraints are equal relationship) and define a set of points that achieve each constraint through the points of intersection with axes.
Note that each of the points mentioned represents values of ($\mathrm{X}_{1}, \mathrm{X}_{2}$).
3- Determine the solutions area:

> Constraints \geq represents the area far from $(0,0)$
> Constraints \leq represents the area near from $(0,0)$
> Constraints $=$ represents the points along it .

Then highlight the common area of the possible solutions for all points . And will be at least one point of these points (consisting of the solutions) represent the optimal solution to the problem.
4- Draw objective function by selecting a certain value and move it parallel to its location within the possible solutions to the region, while access to the optimal solution to the problem .
5- Choose the optimal solution for the problem by compensation the values of each of the points that formed the area of possible solutions.

- Select the point that gives the greatest value if the objective function maximize.
- Select the point that gives the lowest value if the objective function minimize.

Types of solutions in Graphical Method :

1- Unique optimal solution.
2- Alternative optimal solution.

3- Unbounded solution .
4- Infeasible solution .

Example-1-

Use the graphical method to solve the following linear programming problem .And what is the type of solution ?
$\operatorname{Max} Z=15 X_{1}+10 X_{2}$
s.t.

$$
4 X_{1}+6 X_{2} \leq 360
$$

$$
3 X_{1}+0 X_{2} \leq 180
$$

$$
0 X_{1}+5 X_{2} \leq 200
$$

$$
X_{1}, X_{2} \geq 0
$$

Solution:

1-The given LP problem is already in mathematical form.
2- we shall treat X_{1} as the horizontal axis and X_{2} as the vertical axis. Each constraint will be used to mark the area of feasible solutions .

Consider the first constraint $4 X_{1}+6 X_{2} \leq 360$. treat it as the equation,
$4 X_{1}+6 X_{2}=360$. the easiest way to plot this line is to find any two points that satisfy the equation, then drawing a straight line through them . the two points are generally the points at which the line intersects the X_{1} and X_{2} axes. for example, when $X_{1}=0$ we get $6 X_{2}=360$ or $X_{2}=60$.similarly, when $X_{2}=0$, $4 \mathrm{X}_{1}=360, \mathrm{X} 1=90$.

These two points are then connected by a straight line as shown in fig. . but the question is: where are the points satisfying $4 X_{1}+6 X_{2} \leq 360$. Any point above the constraint line violates the inequality condition. but any point below the line
does not violate the constraint. thus, the inequality and non-negativity condition can only be satisfied by the shaded area (feasible region or solution space) as shown in fig.

Similarly, the constraints $3 \mathrm{X}_{1} \leq 180$ and $5 \mathrm{X}_{2} \leq 200$ are also plotted on the graph and are indicated by the shaded area as shown in fig.

Since all constraints have been graphed, the area which is bounded by all the constraints lines including all the boundary points is called the feasible region (or solution space). the feasible region is shown in fig. by the shaded area OABCD.

3-(a)- since the optimal value of the objective function occurs at one of the extreme points of the feasible region. it is necessary to determine their coordinates . the coordinates of extreme points of the feasible region are :

(b)- Evaluate objective function value at each extreme point of the feasible region as shown below :

Extreme point	Coordinates $\left(x_{1}, x_{2}\right)$	Objective function value $Z=15 X_{1}+10 X_{2}$
O	$(0,0)$	$15(0)+10(0)=0$
A	$(60,0)$	$15(60)+10(0)=900$
B	$(60,20)$	$15(60)+10(20)=1100$
C	$(30,40)$	$15(30)+10(40)=850$
D	$(0,40)$	$15(0)+10(40)=400$

© - since maximum value of $\mathrm{Z}=1100$ is achieved at the point $\mathrm{B}(60,20)$,the optimal solution to the given LP problem is :

$$
X_{1}=60, X_{2}=20 \text { and } \max Z=1100
$$

Remark : to determine which side of a constraint equation is in the feasible region , examine whether the origin (0,0) satisfies the constraints. if it does , then all points on and below the constraint equation towards the origin are feasible points. if it does not, then all points on and above the constraint equation away from the origin are feasible points .

The type of solution is unique optimal solution.

Example 2- (unique optimal solution)

Resolve the following linear programming problem by graphical method. And what is the type of solution ?

$$
\operatorname{Max} Z=12 X_{1}+15 X_{2}
$$

s.t.

$$
\begin{aligned}
& 4 X_{1}+3 X_{2} \leq 12 \\
& 2 X_{1}+5 X_{2} \leq 10
\end{aligned}
$$

$$
X_{1}, X_{2} \geq 0
$$

Solution:
$\operatorname{Max} Z=12 X_{1}+15 X_{2}$
s.t,
$4 X_{1}+3 X_{2}=12$
$(0,4),(3,0)$
$2 X_{1}+5 X_{2}=10$
$(0,2),(5,0)$

To find C
$4 X_{1}+3 X_{2}=12--\cdots-\cdots-\cdots-----4 X_{1}=12-3 X_{2}----X_{1}=\left(12-3 X_{2}\right) / 4$
$2 X_{1}+5 X_{2}=10---------2\left(12-3 X_{2}\right) / 4+5 X_{2}=10$

$$
X_{2}=8 / 7
$$

$X_{1}=15 / 7$
$C=(15 / 7,8 / 7)$
A : $(0,0)$--------------- $Z=0$
B: (0,2)----------- Z= 30
C : (15/7 ,8/7) ------ Z=300/7
D : (3,0) -------- Z=36

Extreme point	Coordinates $\left(x_{1}, x_{2}\right)$	Objective function value $Z=12 x_{1}+15 x_{2}$
A	$(0,0)$	0
B	$(0,2)$	30
C	$(15 / 7,8 / 7)$	$300 / 7$
D	$(3,0)$	36

We choose the point (C) because it gives greater value when compensated in the objective function.

For the purpose of drawing the objective function compensate optimal value (300/7) in the objective function as follows :
$12 \mathrm{X}_{1}+15 \mathrm{X}_{2}=300 / 7$
And we get the two points and draw objective function that passes from the point (C) because it represent to unique optimal solution.

The type of solution is unique optimal solution.

Example -3: (Alternative optimal solution)

Resolve the following linear programming problem by graphical method. And what is the type of solution ?

Max $Z=5 X_{1}+10 X_{2}$
s.t.

$$
\begin{gathered}
2 X_{1}+4 X_{2} \leq 8 \\
5 X_{1}+2 X_{2} \leq 10
\end{gathered}
$$

$$
X_{1}, X_{2} \geq 0
$$

Solution :
$\operatorname{Max} \mathrm{Z}=5 \mathrm{X}_{1}+10 \mathrm{X}_{2}$
s.t.

$$
\begin{gathered}
2 X_{1}+4 X_{2}=8 \cdots(0,-\cdots(0),(4,0) \\
5 X_{1}+2 X_{2}=10 \cdots-\cdots(0,0),(2)
\end{gathered}
$$

A : 0 , 0) -------	$\mathrm{Z}=0$
B: $(2,0) \cdots-\cdots$	Z=10
C: (1.5 , 1.25) ----	Z=20
D: (0,2)----------	$\mathrm{Z}=20$

$$
5 X_{1}+10 X_{2}=20
$$

Extreme point	Coordinates $\left(x_{1}, x_{2}\right)$	Objective function value $Z=5 x_{1}+10 x_{2}$
A	$(0,0)$	0
B	$(2,0)$	10
C	$(1.5,1.25)$	20
D	$(0,2)$	20

We get the two points $(0,2),(4,0)$ and draw objective function, and we note that the objective function applies to the first equation because the solution is alternative optimal solution .

The type of solution is alternative optimal solution
Example 4: (unbounded solution)
Resolve the following linear programming problem by graphical method . . And what is the type of solution ?

$$
\min Z=10 X_{1}+4 X_{2}
$$

s.t.

$$
8 X_{1}+5 X_{2} \geq 20
$$

$$
5 X_{1}+10 X_{2} \geq 30
$$

$$
X_{1}, X_{2} \geq 0
$$

Solution:
$\min Z=10 X_{1}+4 X_{2}$
s.t.
$8 X_{1}+5 X_{2}=20$
$(0,4),(20 / 8,0)$
$5 X_{1}+10 X_{2}=30$
$(0,3),(6,0)$

Area solutions is highlight area and determined by points A, B, C.
The resulting solution is unbounded solution because there is no bounded area solution.

Example 5: (infeasible solution)

Resolve the following linear programming problem by graphical method . . And what is the type of solution ?
$\max Z=10 X_{1}+8 X_{2}$
s.t.

$$
2 X_{1}+3 X_{2} \geq 24
$$

$$
5 X_{1}+2 X_{2} \leq 10
$$

$$
X_{1}, X_{2} \geq 0
$$

Solution:
$\max Z=10 X_{1}+8 X_{2}$
s.t.

$$
\begin{aligned}
2 X_{1}+3 X_{2} & =24 \\
5 X_{1}+2 X_{2} & =10
\end{aligned}(0,8),(12,0), ~(0,5),(2,0)
$$

We note from the graph the absence of a common area between the equations . So the resulting is infeasible solution because there is no common area solution .

Problems

1-

Use the graphical method to solve the following LP problem. And what is the type of solution?

$$
\begin{aligned}
& \operatorname{Max} Z=2 X_{1}+\quad X_{2} \\
& \text { s.t. } \\
& X_{1}+2 X_{2} \leq 10 \\
& X_{1}+X_{2} \leq 6 \\
& X_{1}-X_{2} \leq 2 \\
& X_{1}-2 X_{2} \leq 1 \\
& X_{1}, X_{2} \geq 0 \\
& 2-
\end{aligned}
$$

Use the graphical method to solve the following LP problem. And what is the type of solution?
$\operatorname{Max} Z=10 X_{1}+15 X_{2}$
s.t.
$2 X_{1}+X_{2} \leq 26$
$2 X_{1}+4 X_{2} \leq 56$
$-X_{1}+X_{2} \leq 5$

And $\quad X_{1}, X_{2} \geq 0$
3-
Use the graphical method to solve the following LP problem. And what is the type of solution?
$\operatorname{Max} Z=40 X_{1}+80 \quad X_{2}$
s.t.

$$
\begin{aligned}
& 2 \mathrm{X}_{1}+3 \mathrm{X}_{2} \leq 48 \\
& \mathrm{X}_{1} \leq 15 \\
& \mathrm{X}_{2} \leq 10 \\
& \text { And } \quad \mathrm{X}_{1}, \mathrm{X}_{2} \geq 0
\end{aligned}
$$

4-

Use the graphical method to solve the following LP problem. And what is the type of solution?

$$
\mathrm{Max} Z=60 \mathrm{X}_{1}+40 \mathrm{X}_{2}
$$

s.t.
$X_{1} \leq 25$
$X_{2} \leq 35$
$2 X_{1}+X_{2} \leq 60$
And $X_{1}, X_{2} \geq 0$

5-
Use the graphical method to solve the following LP problem. And what is the type of solution ?
$\operatorname{Max} Z=3 X_{1}+1.5 X_{2}$
s.t.
$X_{1}+X_{2} \leq 4$
$X_{1}+2 X_{2} \leq 6$
$3 X_{1}+1.8 X_{2} \leq 6$
And $X_{1}, X_{2} \geq 0$

6-
Use the graphical method to solve the following LP problem. And what is the type of solution ?

$$
\operatorname{Max} Z=X_{1}+2 X_{2}
$$

s.t.

$$
\begin{gathered}
X_{1}+2 X_{2} \leq 10 \\
X_{1}+X_{2} \geq 1 \\
X_{2} \leq 4
\end{gathered}
$$

And $X_{1}, \mathrm{X}_{2} \geq 0$

7-
Use the graphical method to solve the following LP problem. And what is the type of solution ?
$\mathrm{Max} Z=12 \mathrm{X}_{1}+4 \mathrm{X}_{2}$
s.t.
$4 X_{1}+2 X_{2} \leq 4$
$2 \mathrm{X}_{1} \leq 8$

And $X_{1}, X_{2} \geq 0$

8-
Use the graphical method to solve the following LP problem. And what is the type of solution ?
$\operatorname{Max} Z=9 X_{1}+6 X_{2}$
s.t.
$4 X_{1}+2 X_{2} \leq 4$
$6 X_{1}+8 X_{2} \geq 8$
And $X_{1}, X_{2} \geq 0$

9-
Use the graphical method to solve the following LP problem. And what is the type of solution ?

$$
\operatorname{Max} Z=4 X_{1}-\quad X_{2}
$$

s.t.

$$
\begin{aligned}
& X_{1}+2 X_{2} \leq 4 \\
& 2 X_{1}+3 X_{2} \leq 12 \\
& X_{1}-X_{2} \leq 3
\end{aligned}
$$

And $\quad X_{1}, X_{2} \geq 0$

Solutions:

1-
Plot on a graph each constraint by first treating them as a linear equation in the same way as discussed earlier. Use the inequality condition of each constraint to mark the feasible region (solution space) as shown in fig. . the feasible region is shown by the shaded area. Here it may be noted that we have not considered the area below the lines $X_{1}-X_{2}=2$ and $X_{1}-2 X_{2}=1$ for the negative values of X_{2}. this is because of the non-negativity condition,$X_{2} \geq 0$, which implies that negative values of X_{2} are not desirable .

The coordinates of extreme points of the feasible region are :
$\mathrm{O}(0,0), \mathrm{A}(1,0), \mathrm{B}(3,1), \mathrm{C}(4,2), \mathrm{D}(2,4)$ and , $\mathrm{E}(0,5)$. The value of objective function at each of these extreme points is as follows :

Extreme point	Coordinates $\left(X_{1}, X_{2}\right)$	Objective function value $Z=2 X_{1}+X_{2}$
O	$(0,0)$	$2(0)+1(0)=0$
A	$(1,0)$	$2(1)+1(0)=2$
B	$(3,1)$	$2(3)+1(1)=7$
C	$(4,2)$	$\mathbf{2 (4) + 1 (2) = 1 0}$
D	$(2,4)$	$2(2)+1(4)=8$
E	$(0,5)$	$2(0)+1(5)=5$

The maximum value of the objective function $Z=10$ occurs at the extreme point $(4,2)$. hence, the optimal solution to the given LP problem is :
$X_{1}=4, X_{2}=2$ and $\max Z=10$
The type of solution is unique optimal solution .

2-

This problem is depicted graphically in fig.. the feasible region is shown by shaded area . it may be noted here that we have not considered the area below the line $-X_{1}+X_{2}=5$ for the negative values of X_{1}.

This is because of the non- negativity condition $X_{1} \geq 0$, which implies that negative values of X_{1} should not be considered.

The coordinates of extreme points of the feasible region are :
$\mathrm{O}(0,0), \mathrm{A}(13,0), \mathrm{B}(8,10), \mathrm{C}(6,11)$, and , $\mathrm{D}(0,5)$.The value of the objective function at each of these extreme points is as follows :

Extreme point	Coordinates $\left(X_{1}, X_{2}\right)$	Objective function value $Z=10 X_{1}+15 X_{2}$
O	$(0,0)$	$10(0)+15(0)=0$
A	$(13,0)$	$10(13)+15(0)=130$
B	$(8,10)$	$10(8)+\mathbf{1 5}(10)=\mathbf{2 3 0}$
C	$(6,11)$	$10(6)+15(11)=225$
D	$(0,5)$	$10(0)+15(5)=75$

The maximum value of the objective function $\mathrm{Z}=230$ occurs at extreme point
$B(8,10)$. Hence ,optimal solution to the given LP problem is :
$X_{1}=8, X_{2}=10$ and $\max Z=230$.
The type of solution is unique optimal solution.

3-
Graph each constraint by first treating them as a linear equation in the same way as discussed in the previous problems . use the inequality condition of each constraint to make the feasible region as shown in fig .. the feasible solution space or region is shown by shaded area .

The coordinates of extreme point of the feasible region are :
$\mathrm{O}(0,0), \mathrm{A}(0,10), \mathrm{B}(9,10), \mathrm{C}(15,6)$, and $\mathrm{D}(15,0)$. The value of objective function at each of corner or extreme points is as follows :

Extreme point	Coordinates $\left(X_{1}, X_{2}\right)$	Objective function $Z=40 X_{1}+80 X_{2}$
O	$(0,0)$	$40(0)+80(0)=0$
A	$(0,10)$	$40(0)+80(10)=800$
B	$(9,10)$	$\mathbf{4 0 (9) + \mathbf { 8 0 } (1 0) = 1 1 6 0}$
C	$(15,6)$	$40(15)+80(6)=1080$
D	$(15,0)$	$40(15)+80(0)=600$

Since the maximum value of the objective function $Z=1160$ occurs at the extreme point (9,10), the optimum solution to the given LP problem is : $X_{1}=9, X_{2}=10$ and maximum $Z=$ Rs. 1160.

The type of solution is unique optimal solution.

4-
Graph each constraint by first treating them as linear equation in the usual manner. the coordinates of the extreme points of the feasible solution space or region are :
$\mathrm{A}(0,35), \mathrm{B}(12.5,35), \mathrm{C}(25,10)$ and $\mathrm{D}(25,0)$ as shown in fig . . The value of the objective function at each of these extreme points is as follows :

Extreme point	Coordinates $\left(X_{1}, X_{2}\right)$	Objective function $Z=60 X_{1}+40 X_{2}$
A	$(0,35)$	$60(0)+40(35)=1400$
B	$(12.5,35)$	$\mathbf{6 0 (1 2 . 5) + \mathbf { 4 0 } (\mathbf { 3 5 }) = \mathbf { 2 1 5 0 }}$
C	$(25,10)$	$60(25)+40(10)=1900$
D	$(25,0)$	$60(25)+40(0)=1500$

The type of solution is unique optimal solution.
$5-$
$\operatorname{Max} Z=3 X_{1}+1.5 X_{2}$
s.t.
$X_{1}+X_{2} \leq 4$
$X_{1}+2 X_{2} \leq 6$
$3 X_{1}+1.8 \quad X_{2} \geq 6$
And $\quad X_{1}, X_{2} \geq 0$

$$
\begin{array}{ll}
X_{1}+X_{2}=4----- & (0,4),(4,0) \\
X_{1}+2 X_{2}=6-- & (0,3),(6,0) \\
3 X_{1}+1.8 X_{2}=6---- & (0,10 / 3),(2,0)
\end{array}
$$

the coordinates of the extreme points of the feasible solution space or region are :
$A(2,0), B(2 / 7,20 / 7), C(2,2)$ and $D(4,0)$ as shown in fig . . The value of the objective function at each of these extreme points is as follows :

Extreme point	Coordinates $\left(X_{1}, X_{2}\right)$	Objective function $Z=3 X_{1}+1.5 X_{2}$
A	$(2,0)$	$3(2)+1.5(0)=6$
B	$(2 / 7,20 / 7)$	$3(2 / 7)+1.5(20 / 70)=36 / 7$
C	$(2,2)$	$3(2)+1.5(2)=9$
D	$(4,0)$	$\mathbf{3 (4) + 1 . 5 (0) = 1 2}$

The type of solution is unique optimal solution.

$$
\begin{aligned}
& 6- \\
& \operatorname{Max} Z=X_{1}+2 \quad X_{2} \\
& \text { s.t. } \\
& X_{1}+2 X_{2} \leq 10 \\
& X_{1}+X_{2} \geq 1 \\
& X_{2} \leq 4 \\
& \text { And } X_{1}, X_{2} \geq 0 \\
& \\
& X_{1}+2 X_{2}=10----\quad(0,5),(10,0) \\
& X_{1}+X_{2}=1--\quad(0,1),(1,0)
\end{aligned}
$$

the coordinates of the extreme points of the feasible solution space or region are :
$A(1,0), B(0,1), C(0,4), D(2,4)$ and $E(10,0)$,as shown in fig . . The value of the objective function at each of these extreme points is as follows :

Extreme point	Coordinates $\left(X_{1}, X_{2}\right)$	Objective function $Z=X_{1}+2 X_{2}$
A	$(1,0)$	$(1)+2(0)=1$
B	$(0,1)$	$(0)+2(1)=2$
C	$(0,4)$	$(0)+2(4)=8$
D	$(\mathbf{2 4)}$	$(2)+\mathbf{2 (4)}=\mathbf{1 0}$
E	$\mathbf{(1 0 , 0)}$	$(10)+\mathbf{2 (0)}=10$

The type of solution is alternative optimal solution.

7-

$$
\begin{aligned}
& \operatorname{Max} Z=12 X_{1}+4 X_{2} \\
& \text { s.t. } \\
& 4 X_{1}+2 X_{2} \leq 4 \\
& 2 X_{2} \leq 8 \\
& \text { And } X_{1}, X_{2} \geq 0 \\
& 4 X_{1}+2 X_{2}=4-\cdots--\quad(0,2),(1,0) \\
& \left.2 X_{2}=8----4\right)
\end{aligned}
$$

the coordinates of the extreme points of the feasible solution space or region are :
$A(0,0), B(0,2)$, and $C(1,0) \quad$,as shown in fig . . The value of the objective function at each of these extreme points is as follows :

Extreme point	Coordinates $\left(X_{1}, X_{2}\right)$	Objective function $Z=12 X_{1}+4 X_{2}$
A	$(0,0)$	$12(0)+4(0)=0$
B	$(0,2)$	$(12(0)+4(2)=8$
C	$(\mathbf{1}, \mathbf{0})$	$\mathbf{1 2}(\mathbf{1})+\mathbf{4}(\mathbf{0})=\mathbf{1 2}$

The type of solution is unique optimal solution.

8-
$M a x Z=9 X_{1}+6 X_{2}$
s.t.
$4 \mathrm{X}_{1}+2 \mathrm{X}_{2} \leq 4$
$6 X_{1}+8 X_{2} \geq 8$
And $\quad X_{1}, X_{2} \geq 0$

$$
\begin{array}{ll}
4 X_{1}+2 X_{2}=4----- & (0,2),(1,0) \\
6 X_{1}+8 X_{2}=8 & (0,1),(4 / 3,0)
\end{array}
$$

the coordinates of the extreme points of the feasible solution space or region are :
$A(0,0), B(0,2)$, and $C(1,0)$,as shown in fig . . The value of the objective function at each of these extreme points is as follows :

Extreme point	Coordinates $\left(X_{1}, X_{2}\right)$	Objective function $Z=9 X_{1}+6 X_{2}$
A	$(0,1)$	$9(0)+6(1)=6$
B	$\mathbf{(0 , 2)}$	$\mathbf{9 (0) + 6 (2)}=\mathbf{1 2}$
C	$(4 / 5,2 / 5)$	$9(4 / 5)+6(2 / 5)=48 / 5$

The type of solution is unique optimal solution .

9-
$\operatorname{Max} Z=4 X_{1}-X_{2}$
s.t.
$X_{1}+2 X_{2} \leq 4$
$2 X_{1}+3 X_{2} \leq 12$
$X_{1}-X_{2} \leq 3$

And $\quad X_{1}, X_{2} \geq 0$
$X_{1}+2 X_{2}=4-----\quad(4,0),(0,2)$
$2 X_{1}+3 X_{2}=12 \quad(6,0),(0,4)$
$X_{1}-X_{2}=3 \quad--\quad(3,0),(0,-3)$

the coordinates of the extreme points of the feasible solution space or region are :
$A(3,0), B(10 / 3,1 / 3)$, and $C(4,0)$,as shown in fig . . The value of the objective function at each of these extreme points is as follows :

Extreme point	Coordinates $\left(X_{1}, X_{2}\right)$	Objective function $Z=4 X_{1}-X_{2}$
A	$(3,0)$	$4(3)-(0)=12$
B	$(10 / 3,1 / 3)$	$4(10 / 3)-(1 / 3)=13$
C	$(4,0)$	$\mathbf{4 (4) - (0) = 1 6}$

The type of solution is unique optimal solution.

Quantitative Methods
 CHAPTER FOUR
 Solving Linear Programming Model
 Simplex method

-Simplex method.
-Basic variables .
-Non- Basic variables .
-Slack, surplus \& Artificial variables .
The steps of the simplex method .
-Examples
-problems
2023-2024
Prof.Dr. Obaid Mahmmood Mohsin

Simplex method

Simplex method: is the method to solve linear programming models which contain two or more than two , decision variables.

Basic variables:

Are the variables which coefficients $\underline{\text { One }}$ in the equations and Zero in the other equations.

Non-Basic variables:

Are the variables which coefficients are taking any of the values, whether positive or negative or zero.

Slack, surplus \& artificial variables:

a) If the inequality be \leq (less than or equal, then we add a slack variable $+\mathbf{S}$ to change \leq to $=$.
b) If the inequality be \geq (greater than or equal, then we subtract a surplus variable $-\boldsymbol{S}$ to change \geq to $=$.
c) If we have = we use artificial variables.

The steps of the simplex method:

Step 1:
Determine a starting basic feasible solution.
Step 2:
Select an entering variable using the optimality condition. Stop if there is no entering variable.
Step 3:
Select a leaving variable using the feasibility condition.

Optimality condition:

The entering variable in a maximization (minimization) problem is the nonbasic variable having the most negative (positive) coefficient in the \mathbf{Z} row.

The optimum is reached at the iteration where all the Z row coefficient of the non-basic variables are non-negative (non-positive).

Feasibility condition:

For both maximization and minimization problems the leaving variable is the basic associated with the smallest non-negative ratio (with strictly positive denominator).

Pivot row:

a) Replace the leaving variable in the basic column with the entering variable.
b) New pivot row equal to current pivot row divided by pivot element.
c) All other rows:

New row=current row - (pivot column coefficient) *new pivot row.

Example 1:
Use the simplex method to solve the (LP) model:

$$
\max Z=5 x_{1}+4 x_{2}
$$

Subject to

$$
\begin{aligned}
6 x_{1}+4 x_{2} & \leq 24 \\
x_{1}+2 x_{2} & \leq 6 \\
-x_{1}+x_{2} & \leq 1 \\
x_{2} & \leq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution:

$$
\max Z-5 x_{1}-4 x_{2}=0
$$

Subject to

$$
\begin{aligned}
& 6 x_{1}+4 x_{2}+S_{1}=24 \\
& x_{1}+2 x_{2}+S_{2}=6
\end{aligned}
$$

$$
\begin{array}{r}
-x_{1}+x_{2}+S_{3}=1 \\
x_{2}+S_{4}=2
\end{array}
$$

Table 1:

Basic	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	Sol.
S_{1}	6	4	1	0	0	0	24
S_{2}	1	2	0	1	0	0	6
S_{3}	-1	1	0	0	1	0	1
S_{4}	0	1	0	0	0	1	2
Max Z	-5	-4	0	0	0	0	0

$$
\begin{aligned}
& \frac{24}{6}=4 \\
& \frac{6}{1}=6 \\
& \frac{1}{-1}=-1 \quad \text { (ignore) } \\
& \frac{2}{0}=\infty \quad \text { (ignore) }
\end{aligned}
$$

The entering variable is x_{1} and S_{1} is a leaving variable.
Table 2:

\leftarrow| Basic | x_{1} | x_{2} | S_{1} | S_{2} | S_{3} | S_{4} | Sol. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x_{1} | 1 | $2 / 3$ | $1 / 6$ | 0 | 0 | 0 | 4 |
| S_{2} | 0 | $\boxed{4}$ | $4 / 3$ | $-1 / 6$ | 1 | 0 | 0 |
| 2 | | | | | | | |
| S_{3} | 0 | $5 / 3$ | $1 / 6$ | 0 | 1 | 0 | 5 |
| S_{4} | 0 | 1 | 0 | 0 | 0 | 1 | 2 |
| Max Z | 0 | $-2 / 3$ | $5 / 6$ | 0 | 0 | 0 | 20 |

- Pivot row or new x_{1} row $=\frac{1}{6}$ [current S_{1} row]

$$
=\frac{1}{6}\left[\begin{array}{lllllll}
6 & 4 & 1 & 0 & 0 & 0 & 24
\end{array}\right]
$$

$$
=\left[\begin{array}{lllllll}
1 & \frac{2}{3} & \frac{1}{6} & 0 & 0 & 0 & 4
\end{array}\right]
$$

- New S_{2} row=[current S_{2} row]-(1)[new x_{1} row]

$$
\begin{aligned}
& =\left[\begin{array}{lllllll}
1 & 2 & 0 & 1 & 0 & 0 & 6
\end{array}\right]-(1)\left[\begin{array}{llllllll}
1 & 2 / 3 & 1 / 6 & 0 & 0 & 0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
0 & 4 / 3 & -1 / 6 & 1 & 0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

- New S_{3} row=[current S_{3} row]-(1)[new x_{1} row]

$$
\begin{aligned}
& =\left[\begin{array}{lllllll}
-1 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right]-(-1)\left[\begin{array}{llllllll}
1 & 2 / 3 & 1 / 6 & 0 & 0 & 0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
0 & 5 / 3 & 1 / 6 & 0 & 1 & 0 & 5
\end{array}\right]
\end{aligned}
$$

- New S_{4} row=[current S_{4} row]-(0)[new x_{1} row]

$$
\begin{aligned}
& =\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 1 & 2
\end{array}\right]-(0)\left[\begin{array}{lllllll}
1 & 2 / 3 & 1 / 6 & 0 & 0 & 0 & 0
\end{array} 4\right. \\
& =\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & -1 & 2
\end{array}\right]
\end{aligned}
$$

- New Z row=[current Z row]-(-5)[new x_{1} row]

$$
\begin{aligned}
& =\left[\begin{array}{cccccccccccc}
-5 & -4 & 0 & 0 & 0 & 0 & 0
\end{array}\right]-(-5)\left[\begin{array}{lllllll}
1 & 2 / 3 & 1 / 6 & 0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
0 & -2 / 3 & 5 / 6 & 0 & 0 & 0 & 20
\end{array}\right]
\end{aligned}
$$

Now:

$$
\begin{aligned}
& \frac{4}{\frac{2}{3}}=6 \\
& 2 /(4 / 3)=3 / 2 \\
& \frac{5}{\frac{5}{3}}=3 \\
& \frac{2}{1}=2
\end{aligned}
$$

The entering variable is x_{2} and S_{2} is a leaving variable.

Table 3: (optimal solution):

Basic	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	S_{4}	Sol.
x_{1}	1	0	$1 / 4$	$-1 / 2$	0	0	3
x_{2}	0	1	$-1 / 8$	$3 / 4$	0	0	$3 / 2$
S_{3}	0	0	$3 / 8$	$-5 / 4$	1	0	$5 / 2$
S_{4}	0	0	$1 / 8$	$-3 / 4$	0	1	$1 / 2$
Max Z	0	0	$3 / 4$	$1 / 2$	0	0	21

■ Pivot row or new x_{2} row $=\frac{1}{\frac{4}{3}}$ [current S_{2} row]

$$
=\frac{1}{4}\left[\begin{array}{lllllll}
0 & 4 / 3 & -1 / 6 & 1 & 0 & 0 & 2
\end{array}\right]
$$

$$
=\left[\begin{array}{lllllll}
0 & 1 & -1 / 8 & 3 / 4 & 0 & 0 & 3 / 2
\end{array}\right]
$$

- New x_{1} row=[current x_{1} row]-(2/3)[new x_{2} row]
$=\left[\begin{array}{lllllll}1 & 2 / 3 & 1 / 6 & 0 & 0 & 0 & 4\end{array}\right]-(2 / 3)\left[\begin{array}{lllllll}0 & 1 & -1 / 8 & 3 / 4 & 0 & 0 & 3 / 2\end{array}\right]$
$=\left[\begin{array}{lllllll}1 & 0 & 1 / 4 & -1 / 2 & 0 & 0 & 3\end{array}\right]$
- New S_{3} row=[current S_{3} row]-(5/2)[new x_{2} row]
$=\left[\begin{array}{lllllll}0 & 5 / 3 & 1 / 6 & 0 & 1 & 0 & 5\end{array}\right]-(5 / 3)\left[\begin{array}{lllllll}0 & 1 & -1 / 8 & 3 / 4 & 0 & 0 & 3 / 2\end{array}\right]$
$=\left[\begin{array}{lllllll}0 & 0 & 3 / 8 & -5 / 4 & 1 & 0 & 5 / 2\end{array}\right]$
- New S_{4} row=[current S_{4} row]-(1)[new x_{2} row]
$=\left[\begin{array}{lllllllllll}0 & 1 & 0 & 0 & 0 & 1 & 2\end{array}\right]-(1)\left[\begin{array}{llllll}0 & 1 & -1 / 8 & 3 / 4 & 0 & 0\end{array}\right]$
$=\left[\begin{array}{lllllll}0 & 0 & 1 / 8 & -3 / 4 & 0 & 1 & 1 / 2\end{array}\right]$

New Z row=[current Z row]-(-2/3)[new x_{2} row] $\left.=\left[\begin{array}{lllllll}0 & -2 / 3 & 5 / 6 & 0 & 0 & 0 & 20\end{array}\right]-(-2 / 3)\left[\begin{array}{llllll}0 & 1 & -1 / 8 & 3 / 4 & 0 & 0\end{array}\right] / 2\right]$ $=\left[\begin{array}{lllllll}0 & 0 & 3 / 4 & 1 / 2 & 0 & 0 & 21\end{array}\right]$
Then the solution is:

$$
x_{1}=3 \& x_{2}=\frac{3}{2} \& S_{3}=\frac{5}{2} \& S_{4}=\frac{1}{2}
$$

$S_{1}=0, S_{2}=0 / / m a x z=21$

Example 2:

Use the simplex method to solve the (LP) model:

$$
\max Z=2 x_{1}+3 x_{2}
$$

Subject to

$$
\begin{aligned}
0.25 x_{1}+0.5 x_{2} & \leq 40 \\
0.4 x_{1}+0.2 x_{2} & \leq 40 \\
0.8 x_{2} & \leq 40 \\
x_{1}, x_{2} \geq & 0
\end{aligned}
$$

Solution:

$$
\max Z-2 x_{1}-3 x_{2}=0
$$

Subject to

$$
\begin{gathered}
0.25 x_{1}+0.5 x_{2}+S_{1}=40 \\
\\
\\
0.4 x_{1}+0.2 x_{2}+S_{2}=40 \\
S_{3} \geq 0
\end{gathered}
$$

Table 1:

\leftarrow| Basic | x_{1} | x_{2} | S_{1} | S_{2} | S_{3} | Sol. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S_{1} | 0.25 | 0.5 | 1 | 0 | 0 | 40 |
| S_{2} | 0.4 | 0.2 | 0 | 1 | 0 | 40 |
| S_{3} | 0 | 0.8 | 0 | 0 | 1 | 40 |
| Max Z | -2 | -3 | 0 | 0 | 0 | 0 |

$\frac{40}{0.5}=80$
$\frac{40}{0.2}=200$
$\frac{40}{0.8}=50$

■ Pivot row or new S_{3} row $=\frac{1}{0.8}\left[\begin{array}{llllll}0 & 0.8 & 0 & 0 & 1 & 40\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1.25 & 50
\end{array}\right]
$$

New S_{1} row=[current S_{1} row]-(0.5)[new x_{2} row]
$=\left[\begin{array}{llllll}0.25 & 0.5 & 1 & 0 & 0 & 40\end{array}\right]-(0.5)\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 1.25 & 50\end{array}\right]$
$=\left[\begin{array}{llllll}0.25 & 0 & 1 & 0 & -0.625 & 15\end{array}\right]$
New S_{2} row=[current S_{2} row]-(0.2)[new x_{2} row]

$$
=\left[\begin{array}{llllll}
0.4 & 0.2 & 0 & 1 & 0 & 40
\end{array}\right]-(0.2)\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1.25 & 50
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
{[0.4} & 0 & 0 & 1 & -0.25 & 30
\end{array}\right]
$$

New Z row $=\left[\right.$ current Z row]-(-3)[new x_{2} row]
$=\left[\begin{array}{llllll}-2 & -3 & 0 & 0 & 0 & 0\end{array}\right]-(-3)\left[\begin{array}{lllllll}0 & 1 & 0 & 0 & 1.25 & 50\end{array}\right]$
$=\left[\begin{array}{llllll}-2 & 0 & 0 & 0 & 3.75 & 150\end{array}\right]$

Table 2:

Pivot row or new S_{1} row $=\frac{1}{0.25}\left[\begin{array}{llllll}0.25 & 0 & 1 & 0 & -0.625 & 15\end{array}\right]$

$$
=\left[\begin{array}{lllllll}
1 & 0 & 4 & 0 & -2.5 & 60
\end{array}\right]
$$

New S_{2} row=[current S_{2} row]-(0.4)[new x_{1} row]

$$
\begin{aligned}
& =\left[\begin{array}{llllll}
0.4 & 0 & 0 & 1 & -0.25 & 30
\end{array}\right]-(0.4)\left[\begin{array}{llllll}
1 & 0 & 4 & 0 & -2.5 & 60
\end{array}\right] \\
& {[0}
\end{aligned} 0-1.6
$$

New x_{2} row $=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 1.25 & 50\end{array}\right]-(0)\left[\begin{array}{llllll}1 & 0 & 4 & 0 & -2.5 & 60\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1.25 & 50
\end{array}\right]
$$

New Zrow=[current Z row]-(-2)[$\left.\begin{array}{llllll}1 & 0 & 4 & 0 & -2.5 & 60\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{llllll}
-2 & 0 & 0 & 0 & 3.75 & 150
\end{array}\right]-(-2)\left[\begin{array}{llllll}
1 & 0 & 4 & 0 & -2.5 & 60
\end{array}\right] \\
& {\left[\begin{array}{lllllll}
0 & 0 & 8 & 0 & -1.25 & 270
\end{array}\right]}
\end{aligned}
$$

Table 3:
Table 3:

Basic	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	Sol.
$\leftarrow x_{1}$	1	0	4	0	-2.5	60
S_{2}	0	0	-1.6	1	0.75	6
x_{2}	0	1	0	0	1.25	50
Max Z	0	0	8	0	-1.25	270

$$
\begin{aligned}
& \frac{60}{-2.5}=-24 \text { (ignore) } \\
& \frac{6}{0.75}=8 \\
& \frac{50}{1.25}=40
\end{aligned}
$$

New S_{2} row $=\frac{1}{0.75}=\left[\right.$ current S_{2} row $]=\frac{1}{0.75}\left[\begin{array}{llllll}0 & 0 & -1.6 & 1 & 0.75 & 6\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & 0 & -2.133 & 1.33 & 1 & 8
\end{array}\right]
$$

New x_{1} row $=\left[\begin{array}{lllllllll}1 & 0 & 4 & 0 & -2.5 & 60\end{array}\right]-(-2.5)\left[\begin{array}{llllll}0 & 0 & -2.133 & 1.33 & 1 & 8\end{array}\right]$

$$
=\left[\begin{array}{llllll}
1 & 0 & -1.333 & 3.325 & 0 & 80
\end{array}\right]
$$

New x_{2} row $=\left[\begin{array}{llllllllll}0 & 1 & 0 & 0 & 1.25 & 50\end{array}\right]-(-1.25)\left[\begin{array}{lllllll}0 & 0 & -2.133 & 1.33 & 1 & 8\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & 1 & -2.666 & -1.663 & 0 & 40
\end{array}\right]
$$

New Zrow $=\left[\begin{array}{lllllll}0 & 0 & 8 & 0 & -1.25 & 270\end{array}\right]-(-1.25)\left[\begin{array}{llllll}0 & 0 & -2.133 & 1.33 & 1 & 8\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & 0 & 5.33 & 1.663 & 0 & 280
\end{array}\right]
$$

Table 4: (optimal solution):

Basic	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	Sol.
x_{1}	1	0	-1.333	3.325	0	80
S_{3}	0	0	-2.133	0	1	8
x_{2}	0	1	2.666	-1.663	0	40
Max Z	0	0	5.33	1.663	0	280

The optimal solution :

$$
x_{1}=80 \quad, \quad x_{2}=40 \quad, \mathrm{~S}_{3}=8 \quad S_{1}=0 \& S_{2}=0 \quad / / \max \mathrm{Z}=280
$$

Example 3:

Use the simplex method to solve the (LP) model:

$$
\min Z=-6 x_{1}-10 x_{2}-4 x_{3}
$$

Subject to

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & \leq 1000 \\
x_{1}+x_{2} & \leq 500 \\
x_{1}+2 x_{2} & \leq 700 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Solution:
$\min Z+6 x_{1}+10 x_{2}+4 x_{3}=0$
Subject to

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+S_{1}= & 1000 \\
x_{1}+x_{2}+S_{2} & =500 \\
x_{1}+2 x_{2}+S_{3} & =700 \\
x_{1}, x_{2}, x_{3}, S_{1}, S_{2} S_{3} & \geq 0
\end{aligned}
$$

Table 1:

Basic	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	Sol.
S_{1}	1	1	1	1	0	0	1000
S_{2}	1	1	0	0	1	0	500
S_{3}	1	2	0	0	0	1	700
Min Z	6	10	4	0	0	0	0

$$
\frac{1000}{1}=1000
$$

$\longleftarrow \frac{500}{1}=500$

$$
\frac{700}{2}=350
$$

New S_{3} row or x_{2} row $=\frac{1}{2}\left[\begin{array}{lllllll}1 & 2 & 0 & 0 & 0 & 1 & 700\end{array}\right]$

$$
=\left[\begin{array}{lllllll}
\frac{1}{2} & 1 & 0 & 0 & 0 & \frac{1}{2} & 350
\end{array}\right]
$$

$$
\text { New } S_{1} \text { row }=\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 1000
\end{array}\right]-(1)\left[\begin{array}{llllll}
\frac{1}{2} & 1 & 0 & 0 & 0 & \frac{1}{2}
\end{array} \text { 350 }\right]
$$

$$
=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 1 & 1 & 0 & -\frac{1}{2} & 650
\end{array}\right]
$$

New S_{2} row $=\left[\begin{array}{lllllll}1 & 1 & 0 & 0 & 1 & 0 & 500\end{array}\right]-(1)\left[\begin{array}{llllll}\frac{1}{2} & 1 & 0 & 0 & 0 & \frac{1}{2} \\ 350\end{array}\right]$

$$
=\left[\begin{array}{lllllll}
\frac{1}{2} & 0 & 0 & 0 & 1 & -\frac{1}{2} & 150
\end{array}\right]
$$

New Zrow $=\left[\begin{array}{lllllll}6 & 10 & 4 & 0 & 0 & 0 & 0\end{array}\right]-(10)\left[\begin{array}{llllll}\frac{1}{2} & 1 & 0 & 0 & 0 & \frac{1}{2} \\ 350\end{array}\right]$

$$
=\left[\begin{array}{lllllll}
1 & 0 & 4 & 0 & 0 & -5 & -3500
\end{array}\right]
$$

Table 2:

\longleftarrow| Basic | x_{1} | x_{2} | x_{3} | S_{1} | S_{2} | S_{3} | Sol. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S_{1} | $1 / 2$ | 0 | 1 | 1 | 0 | $-1 / 2$ | 650 |
| S_{2} | $1 / 2$ | 0 | 0 | 0 | 1 | $-1 / 2$ | 150 |
| x_{2} | $1 / 2$ | 1 | 0 | 0 | 0 | $1 / 2$ | 350 |
| Min Z | 1 | 0 | 4 | 0 | 0 | -5 | -3500 |

$\frac{650}{1}=650$
$\frac{150}{0}=\infty \quad$ (ignore)
$\frac{350}{0}=\infty \quad$ (ignore)
New S_{1} row or x_{3} row $=1\left[\begin{array}{llllllll}\frac{1}{2} & 0 & 1 & 1 & 0 & -\frac{1}{2} & 650\end{array}\right]$

$$
=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 1 & 1 & 0 & -\frac{1}{2} & 650
\end{array}\right]
$$

$$
\begin{aligned}
& \text { New } S_{2} \text { row }=\left[\begin{array}{lllllll}
\frac{1}{2} & 0 & 0 & 0 & 1-\frac{1}{2} & 150
\end{array}\right]-(0)\left[\begin{array}{lllllll}
\frac{1}{2} & 0 & 1 & 1 & 0 & -\frac{1}{2} & 650
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
\frac{1}{2} & 0 & 0 & 0 & 1 & -\frac{1}{2} & 150
\end{array}\right] \\
& \text { New } x_{2} \text { row }=\left[\begin{array}{lllllllllll}
\frac{1}{2} & 1 & 0 & 0 & 0 & \frac{1}{2} & 350
\end{array}\right]-(0)\left[\begin{array}{lllllll}
\frac{1}{2} & 0 & 1 & 1 & 0 & -\frac{1}{2} & 650
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
\frac{1}{2} & 1 & 0 & 0 & 0 & \frac{1}{2} & 350
\end{array}\right] \\
& \text { New Zrow }=\left[\begin{array}{lllllll}
1 & 0 & 4 & 0 & 0 & -5 & -3500
\end{array}\right]-(4)\left[\begin{array}{lllllll}
\frac{1}{2} & 0 & 1 & 1 & 0 & -\frac{1}{2} & 650
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
-1 & 0 & 0 & -4 & 0 & -3 & -6100
\end{array}\right]
\end{aligned}
$$

Table 3: (optimal solution):

Basic	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	Sol.
x_{3}	$1 / 2$	0	1	1	0	$-1 / 2$	650
S_{2}	$1 / 2$	0	0	0	1	$-1 / 2$	150
x_{2}	$1 / 2$	1	0	0	0	$1 / 2$	350
Min Z	-1	0	0	-4	0	-3	-6100

The optimal solution:
$x_{3}=650 \quad, x_{2}=350, S_{2}=150 \quad S_{3} \& S_{1}=0, x_{1}=0 / / \mathrm{Min} \mathrm{Z}=6100$

Example 4:

Use the simplex method to solve the (LP) model:

$$
\max Z=4 x_{1}-x_{2}
$$

Subject to

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 4 \\
2 x_{1}+3 x_{2} & \leq 12 \\
x_{1}-x_{2} & \leq 3 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution:

$$
\max Z-4 x_{1}+x_{2}=0
$$

Subject to

$$
\begin{gathered}
x_{1}+2 x_{2}+S_{1}=4 \\
2 x_{1}+3 x_{2}+S_{2}=12 \\
x_{1}-x_{2}+S_{3}=3 \\
x_{1}, x_{2}, S_{1}, S_{2}, S_{3} \geq 0
\end{gathered}
$$

Table 1:

Table 1:
\downarrow
Basic x_{1} x_{2} S_{1} S_{2} S_{3} Sol. S_{1} 1 2 1 0 0 4 S_{2} 2 3 0 1 0 12 S_{3} 1 -1 0 0 1 3 MaxZ -4 1 0 0 0 0

$$
\begin{aligned}
& \frac{4}{1}=4 \\
& \frac{12}{2}=6 \\
& \frac{3}{1}=3
\end{aligned}
$$

New S_{3} row or x_{1} row $=1\left[\begin{array}{llllll}1 & -1 & 0 & 0 & 1 & 3\end{array}\right]$

$$
=\left[\begin{array}{llllll}
1 & -1 & 0 & 0 & 1 & 3
\end{array}\right]
$$

New S_{1} row $=\left[\begin{array}{llllll}1 & 2 & 1 & 0 & 0 & 4\end{array}\right]-(1)\left[\begin{array}{llllll}1 & -1 & 0 & 0 & 1 & 3\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & 3 & 1 & 0 & -1 & 1
\end{array}\right]
$$

New S_{2} row $=\left[\begin{array}{llllll}2 & 3 & 0 & 1 & 0 & 12\end{array}\right]-(2)\left[\begin{array}{llllll}1 & -1 & 0 & 0 & 1 & 3\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & 5 & 0 & 1 & -2 & 6
\end{array}\right]
$$

New Zrow $=\left[\begin{array}{cccccc}-4 & 1 & 0 & 0 & 0 & 0\end{array}\right]-(-4)\left[\begin{array}{llllll}1 & -1 & 0 & 0 & 1 & 3\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & -3 & 0 & 0 & 4 & 12
\end{array}\right]
$$

Table 2:
Table 2:

\leftarrow| Basic | x_{1} | \downarrow | x_{2} | S_{1} | S_{2} | S_{3} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S_{1} | 0 | 3 | 1 | 0 | -1 | 1 |
| S_{2} | 0 | 5 | 0 | 1 | -2 | 6 |
| x_{1} | 1 | -1 | 0 | 0 | 1 | 3 |
| Max Z | 0 | -3 | 0 | 0 | 4 | 12 |

$$
\begin{aligned}
& \frac{1}{3}=\frac{1}{3} \\
& \frac{6}{5}=\frac{6}{5} \\
& \frac{3}{-1}=-3 \quad \text { (ignore) }
\end{aligned}
$$

New S_{1} row or x_{2} row $=\left(\frac{1}{3}\right)\left[\begin{array}{llllll}0 & 3 & 1 & 0 & -1 & 1\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & 1 & 1 / 3 & 0 & -1 / 3 & 1 / 3
\end{array}\right]
$$

New S_{2} row $=\left[\begin{array}{llllll}0 & 5 & 0 & 1 & -2 & 6\end{array}\right]-(5)\left[\begin{array}{llllll}0 & 1 & 1 / 3 & 0 & -1 / 3 & 1 / 3\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & 0 & -5 / 3 & 1 & -1 / 3 & 13 / 3
\end{array}\right]
$$

New x_{1} row $=\left[\begin{array}{llllll}1 & -1 & 0 & 0 & 1 & 3\end{array}\right]-(-1)\left[\begin{array}{llllll}0 & 1 & 1 / 3 & 0 & -1 / 3 & 1 / 3\end{array}\right]$

$$
=\left[\begin{array}{llllll}
1 & 0 & 1 / 3 & 0 & 2 / 3 & 10 / 3
\end{array}\right]
$$

New Zrow $=\left[\begin{array}{llllll}0 & -3 & 0 & 0 & 4 & 12\end{array}\right]-(-3)\left[\begin{array}{llllll}0 & 1 & 1 / 3 & 0 & -1 / 3 & 1 / 3\end{array}\right]$

$$
=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 3 & 13
\end{array}\right]
$$

Table 3: (optimal solution):

Basic	x_{1}	x_{2}	S_{1}	S_{2}	S_{3}	Sol.
x_{2}	0	1	$1 / 3$	0	$-1 / 3$	$1 / 3$
S_{2}	0	0	$-5 / 3$	1	$-1 / 3$	$13 / 3$
x_{1}	1	0	$1 / 3$	0	$2 / 3$	$10 / 3$
Max Z	0	0	1	0	3	13

The optimal solution:

$$
x_{1}=10 / 3, x_{2}=1 / 3, S_{2}=13 / 3 \quad S_{1} \& S_{3}=0 / / \mathrm{Z}=13
$$

Example 5:

Use the simplex method to solve the (LP) model:

$$
\max Z=16 x_{1}+17 x_{2}+10 x_{3}
$$

Subject to

$$
\begin{array}{cc}
x_{1}+2 x_{2}+4 x_{3} \leq 2000 \\
2 x_{1}+x_{2}+x_{3} & \leq 3600 \\
x_{1}+2 x_{2}+2 x_{3} & \leq 2400 \\
x_{1} & \leq 30 \\
x_{1}, x_{2}, x_{3} \geq 0 &
\end{array}
$$

Solution:

$$
\max Z-16 x_{1}-17 x_{2}-10 x_{3}=0
$$

Subject to

$$
\begin{aligned}
& x_{1}+2 x_{2}+4 x_{3}+S_{1}=2000 \\
& 2 x_{1}+x_{2}+x_{3}+S_{2}=3600 \\
& x_{1}+2 x_{2}+2 x_{3}+S_{3}=2400 \\
& x_{1}+S_{4} \quad=30 \\
& x_{1}, x_{2}, x_{3} \geq 0, \quad S_{1}, S_{2}, S_{3}, S_{4} \geq 0
\end{aligned}
$$

Table 1:

Basic	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	Sol.
S_{1}	1	2	4	1	0	0	0	2000
S_{2}	2	1	1	0	1	0	0	3600
S_{3}	1	2	2	0	0	1	0	2400
S_{4}	1	0	0	0	0	0	1	30
Max Z	-16	-17	-10	0	0	0	0	0

$$
\begin{gathered}
\frac{2000}{2}=1000 \\
\frac{3600}{1}=3600 \\
\frac{2400}{2}=1200 \\
\frac{30}{0}=\infty \quad \text { (ignore) }
\end{gathered}
$$

$$
\text { New } S_{1} \text { row or } x_{1} \text { row }=\left(\frac{1}{2}\right)\left[\begin{array}{llllllll}
1 & 2 & 4 & 1 & 0 & 0 & 0 & 2000
\end{array}\right]
$$

$$
=\left[\begin{array}{lllllll}
1 / 2 & 1 & 2 & 1 / 2 & 0 & 0 & 0 \\
1000
\end{array}\right]
$$

$$
\text { New } S_{2} \text { row }=\left[\begin{array}{llllllll}
2 & 1 & 1 & 0 & 1 & 0 & 0 & 3600
\end{array}\right]
$$

$$
-(1)\left[\begin{array}{llllllll}
1 / 2 & 1 & 2 & 1 / 2 & 0 & 0 & 0 & 1000
\end{array}\right]
$$

$$
=\left[\begin{array}{llllllll}
3 / 2 & 0 & -1 & -1 / 2 & 1 & 0 & 0 & 2600
\end{array}\right]
$$

New S_{3} row $=\left[\begin{array}{llllllll}1 & 2 & 2 & 0 & 0 & 1 & 0 & 2400\end{array}\right]$

$$
=\left[\begin{array}{llllllllll}
& 8 & 0 & -2 & -1 & 0 & 1 & 0 & 400
\end{array}\right]
$$

New S_{4} row $=\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 30\end{array}\right]$
$-(0)\left[\begin{array}{llllllll}1 / 2 & 1 & 2 & 1 / 2 & 0 & 0 & 0 & 1000\end{array}\right]$
$=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 130\end{array}\right]$
New Zrow $=\left[\begin{array}{llllllll}-16 & -17 & -10 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\left.\begin{array}{cccccccccc}
& -(-17)\left[\begin{array}{lllllll}
1 / 2 & 1 & 2 & 1 / 2 & 0 & 0 & 0 \\
1000
\end{array}\right] \\
=[-15 / 2 & 0 & 24 & 17 / 2 & 0 & 0 & 0 & 17000
\end{array}\right]
$$

Table 2:

\downarrow								
Basic	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	Sol.
x_{2}	$1 / 2$	1	2	$1 / 2$	0	0	0	1000
S_{2}	$3 / 2$	0	-1	$-1 / 2$	1	0	0	2600
S_{3}	0	0	-2	-1	0	1	0	400
S_{4}	1	0	0	0	0	0	1	30
Max Z	$-15 / 2$	0	24	$17 / 2$	0	0	0	17000

The entering variable is x_{1}
1000/1/2=2000
2600/3/2=5200/2
400/0 ignore
$30 / 1=30$

Table 3: (optimal solution):

Basic	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	S_{4}	Sol.
x_{2}	0	1	2	$1 / 2$	0	0	$-1 / 2$	985
S_{2}	0	0	-1	$-1 / 2$	1	0	$-3 / 2$	2555
S_{3}	0	0	-2	-1	0	1	0	400
x_{1}	1	0	0	0	0	0	1	30
Max Z	0	0	24	$17 / 2$	0	0	$15 / 2$	17225

New x1 row =[1/2 $\left.112 \begin{array}{llllll}1 / 2 & 0 & 0 & 0 & 1000\end{array}\right]-(1 / 2)\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 30\end{array}\right]=\left[\begin{array}{lllll}1 / 2 & 1 & 2 & 1 / 2 & 0\end{array}\right.$ 00 1000]-[1/2 $0000001 / 215]$
$=\left[\begin{array}{lllllll}0 & 1 & 2 & 1 / 2 & 0 & 0 & -1 / 2 \\ 985\end{array}\right]$
New S2 row = [3/2 $00-1-1 / 210002600]-(3 / 2)\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 30\end{array}\right]$

$=\left[\begin{array}{lllllll}0 & 0 & -1 & -1 / 2 & 1 & 0 & -3 / 2\end{array} 2555\right]$
New S3 row = $\left.\begin{array}{llllllll}0 & 0 & -2 & -1 & 0 & 1 & 0 & 400\end{array}\right]$-(0) [pivot row]
$=\left[\begin{array}{lllllll}0 & 0 & -2 & -1 & 0 & 1 & 0\end{array} 400\right]$

=[$002417 / 20015 / 2$ 17225]
The optimal solution:
$x_{1}=30, x_{2}=985, S_{2}=2555, S_{3}=400, S_{4}=30, x_{3}, S_{1}, S_{4}=0 /$
Z=17225

Example 6:

Use the simplex method to solve the (LP) model:

$$
\max Z=3 x_{1}+5 x_{2}+4 x_{3}
$$

Subject to

$$
\begin{array}{ll}
2 x_{1}+3 x_{2} & \leq 8 \\
2 x_{1}+5 x_{2} & \leq 10 \\
3 x_{1}+2 x_{2}+4 x_{3} & \leq 15
\end{array}
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Solution:
$\max Z-3 x_{1}-5 x_{2}-4 x_{3}=0$
Subject to

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+S_{1} \leq 8 \\
& 2 x_{1}+5 x_{2}+S_{2} \leq 10 \\
& 3 x_{1}+2 x_{2}+4 x_{3}+S_{3} \leq 15 \\
& x_{1}, x_{2}, x_{3}, S_{1}, S_{2}, S_{3} \geq 0
\end{aligned}
$$

Table 1:

Table 1:	
\qquadBasic x_{1} x_{2} x_{3} S_{1} S_{2} S_{3} Sol. S_{1} 2 3 0 1 0 0 8 S_{2} 2 5 0 0 1 0 10 S_{3} 3 2 4 0 0 1 15 Max Z -3 -5 -4 0 0 0 0	

$$
\begin{aligned}
& \frac{8}{3}=2.7 \\
& \frac{10}{5}=2 \\
& \frac{15}{2}=7.5
\end{aligned}
$$

New S_{2} row or x_{2} row $=\left(\frac{1}{5}\right)\left[\begin{array}{lllllll}2 & 5 & 0 & 0 & 1 & 0 & 10\end{array}\right]$

$$
=\left[\begin{array}{llllll}
2 / 5 & 10 & 0 & 1 / 5 & 0 & 2
\end{array}\right]
$$

New S_{1} row $=\left[\begin{array}{lllllll}2 & 3 & 0 & 1 & 0 & 0 & 8\end{array}\right]$

$$
\begin{aligned}
& -(3)\left[\begin{array}{lllllll}
2 / 5 & 1 & 0 & 0 & 1 / 5 & 0 & 2
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
4 / 5 & 0 & 0 & 1 & -3 / 5 & 0 & 2
\end{array}\right]
\end{aligned}
$$

New S_{3} row $=\left[\begin{array}{lllllll}3 & 2 & 4 & 0 & 0 & 1 & 15\end{array}\right]$

$$
\begin{array}{rl}
& -(2)\left[\begin{array}{lllllll}
2 / 5 & 1 & 0 & 0 & 1 / 5 & 0 & 2
\end{array}\right] \\
= & {[11 / 5} \\
0 & 4
\end{array} 0
$$

New Zrow $=\left[\begin{array}{lllllll}-3 & -5 & -4 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& -(-5)\left[\begin{array}{cccccccc}
2 / 5 & 1 & 0 & 0 & 1 / 5 & 0 & 2
\end{array}\right] \\
& =\left[\begin{array}{llllll}
-1 & 0 & -4 & 0 & 1 & 0
\end{array}\right. \\
& \hline
\end{aligned}
$$

Table 2:
Cable 2:

Basic	x_{1}	x_{2}	\downarrow	x_{3}	S_{1}	S_{2}	S_{3}
S_{1}	$4 / 5$	0	0	1	$-3 / 5$	0	Sol.
x_{2}	$2 / 5$	1	0	0	$1 / 5$	0	2
S_{3}	$11 / 5$	1	4	0	$-2 / 5$	1	11
$\operatorname{Max} Z$	-1	0	-4	0	1	0	10

$$
=\left[\begin{array}{llllll}
11 / 20 & 0 & 1 & 0 & -1 / 10 & 1 / 4
\end{array} 11 / 4\right]
$$

New S_{1} row $=\left[\begin{array}{lllllll}4 / 5 & 0 & 0 & 1 & -3 / 5 & 0 & 2\end{array}\right]$

$$
-(0)\left[\begin{array}{lllllll}
11 / 20 & 0 & 1 & 0 & -1 / 10 & 1 / 4 & 11 / 4]
\end{array}\right.
$$

$$
=\left[\begin{array}{lllllll}
4 / 5 & 0 & 0 & 1 & -3 / 5 & 0 & 2
\end{array}\right]
$$

New x_{2} row $=\left[\begin{array}{lllllll}2 / 5 & 1 & 0 & 0 & 1 / 5 & 0 & 2\end{array}\right]$
New Zrow $=\left[\begin{array}{lllllll}-1 & 0 & -4 & 0 & 1 & 0 & 10\end{array}\right]$

$$
\begin{aligned}
& -(-4)\left[\begin{array}{ccccclll}
11 / 20 & 0 & 1 & 0 & -1 / 10 & 1 / 4 & 11 / 4
\end{array}\right] \\
& =[6 / 5
\end{aligned} 0
$$

Table 3: (optimal solution):

Basic	x_{1}	x_{2}	x_{3}	S_{1}	S_{2}	S_{3}	Sol.
S_{1}	$4 / 5$	0	0	1	$-3 / 5$	0	2
x_{2}	$2 / 5$	1	0	0	$1 / 5$	0	2
x_{3}	$11 / 20$	0	1	0	$-1 / 10$	$1 / 4$	$11 / 4$
Max Z	$6 / 5$	0	0	0	$3 / 5$	1	21

The optimal solution:

$$
\begin{aligned}
& x_{2}=2 \\
& x_{3}=11 / 4 \\
& S_{1}=2 \\
& \mathrm{Z}=21 \\
& x_{1}=0, \quad S_{2}=0, \quad S_{3}=0
\end{aligned}
$$

Problems

Use the simplex method to solve the (LP) model:
1-

$$
\max Z=3 x_{1}+5 x_{2}+4 x_{3}
$$

Subject to

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \leq 8 \\
& 2 x_{2}+5 x_{3} \quad \leq 10 \\
& 3 x_{1}+2 x_{2}+4 x_{3} \leq 15 \\
& x_{1}, x_{2}, x_{3} \quad \geq 0
\end{aligned}
$$

2-

$$
\max Z=4 x_{1}+3 x_{2}
$$

Subject to

$$
\begin{gathered}
2 x_{1}+x_{2} \quad \leq 1000 \\
x_{1} \leq 400 \\
x_{2} \leq 700 \\
x_{1}, x_{2}, \quad \geq 0
\end{gathered}
$$

3-

$$
\max Z=270 x_{1}+144 x_{2}+225 x_{3}
$$

Subject to

$$
\begin{array}{cl}
8 x_{1}+4 x_{2}+5 x_{3} & \leq 1000 \\
5 x_{1}+3 x_{2}+3 x_{3} & \leq 650 \\
9 x_{1}+6 x_{2}+9 x_{3} & \leq 1260 \\
x_{1}, x_{2}, x_{3} \quad \geq 0
\end{array}
$$

4-
$\max Z=10 x_{1}+15 x_{2}+20 x_{3}$
Subject to

$$
\begin{gathered}
10.7 x_{1}+5 x_{2}+2 x_{3} \leq 2705 \\
5.4 x_{1}+10 x_{2}+4 x_{3} \leq 2210 \\
0.7 x_{1}+x_{2}+x_{3} \leq 445 \\
x_{1}, x_{2}, x_{3} \quad \geq 0
\end{gathered}
$$

5-

$$
\max Z=90 x_{1}+60 x_{2}
$$

Subject to

$$
\begin{gathered}
5 x_{1}+8 x_{2} \quad \leq 2000 \\
x_{1} \leq 175 \\
x_{2} \leq 2255 \\
7 x_{1}+4 x_{2} \quad \leq 1400 \\
x_{1}, x_{2}, \quad \geq 0
\end{gathered}
$$

6-

$$
\min Z=x_{1}-3 x_{2}+3 x_{3}
$$

Subject to

$$
\begin{gathered}
3 x_{1}-x_{2}+2 x_{3} \quad \leq 7 \\
2 x_{1}+4 x_{2} \quad \geq-12 \\
-4-4 x_{1}+3 x_{2}+8 x_{3} \leq 10 \\
x_{1}, x_{2}, x_{3} \quad \geq 0
\end{gathered}
$$

