

Trusses

Compression

Forces

A body being squeezed

Tension

Mr. Diyari Burhan

Trusses

Simple Trusses

- A truss composed of slender members joined together at their end points
Planar Trusses
- Planar trusses used to support roofs and bridges
- Roof load is transmitted to the truss at joints by means of a series of purlins

Mr. Diyari Burhan

Trusses

Simple Trusses

Planar Trusses

- The analysis of the forces developed in the truss members is 2D
- Similar to roof truss, the bridge truss loading is also coplanar

Mr. Diyari Burhan

Trusses

Simple Trusses

Assumptions for Design

1. "All loadings are applied at the joint"

- Weight of the members neglected

2. "The members are joined together by smooth pins"

- Assume connections provided the center lines of the joining members are concurrent

Trusses

Simple Trusses

Simple Truss

- Form of a truss must be rigid to prevent collapse
- The simplest form that is rigid or stable is a triangle

Mr. Diyari Burhan

Trusses

Solving Truss Forces

Assumptions:

All members are perfectly straight.
All loads are applied at the joints.
All joints are pinned and frictionless.
Each member has no weight.
Members can only experience tension or compression forces.

Mr. Diyari Burhan

Trusses

M ethod of Joints

Use cosine and sine to determine x and y vector components.

Assume all members to be in tension. A positive answer will mean the member is in tension, and a negative number will mean the
member is in compression.

As forces are solved, update free body diagrams. Use correct magnitude and sense for subsequent joint free body diagrams.

Mr. Diyari Burhan

Trusses
 M ethod of Joints

Using Truss Dimensions to Find Angles

$$
\begin{gathered}
\tan \theta_{1}=\frac{o p p}{a d j} \\
\tan \theta_{1}=\frac{4.0 f t}{3.0 f t} \\
\theta_{1}=\tan ^{-1} \frac{4.0}{3.0} \\
\theta_{1}=53.130^{\circ}
\end{gathered}
$$

Trusses

M ethod of Joints
Draw a free body diagram of each pin.

Every member is assumed to be in tension. A positive answer indicates the member is in tension, and a negative answer indicates the member is in compression.
Mr. Diyari Burhan

Trusses	
M ethod of Joints	
	$\Sigma F_{Y}=0$
	$R_{A y}+A B_{y}=0$
437.50 lb	$350 l b+A B \sin 53.1 \underline{30}^{\circ}=0$
$A F_{53.130^{\circ}}$	$A B \sin 53.1 \underline{30}^{\circ}=-350 \mathrm{lb}$
	$A B=\frac{-350 \mathrm{lb}}{\sin 53.13}$
	$A B=-438 \mathrm{lb}$ COMPRESSION
Mr. Diyari Burhan	17

Trusses	
M ethod of Joints	
	$\Sigma F Y=0$
	$R_{C y}+B C_{y}=0$
${ }^{302.33} \mathrm{BC}$ lb	$150 \mathrm{lb}+B C \sin 29.7 \underline{5}^{\circ}=0$
	$B C \sin 29.745^{\circ}=-150 \mathrm{lb}$
150 lb	$B C=\frac{-150 l b}{\sin 29.745^{\circ}}$
	$B C=-302 \mathrm{lb}$ COMPRESSION
Mr. Diyari Burhan	-

Mr. Diyari Burhan

$$
\begin{array}{r}
\Sigma F_{Y}=0 \\
B D-F_{D}=0 \\
B D-500 l b=0 \\
B D=500 \mathrm{lb} \text { TENSION }
\end{array}
$$

Trusses

Example 5.2

Determine the force in each member of the truss and indicate whether the members are in tension or compression.

Mr. Diyari Burhan

Trusses

Solution

- 2 unknown member forces at joint B
- 1 unknown reaction force at joint C
- 2 unknown member forces and 2 unknown reaction forces at point A
For Joint B,
$+\rightarrow \sum F_{x}=0 ;$
$500 \mathrm{~N}-F_{B C} \sin 45^{\circ} \mathrm{N}=0 \Rightarrow F_{B C}=707.1 \mathrm{~N}(\mathrm{C})$
$+\uparrow \sum F_{y}=0 ;$
$F_{B C} \cos 45^{\circ} N-F_{B A}=0 \Rightarrow F_{B A}=500 N(T)$

Mr. Diyari Burhan

Trusses
 Solution

> For Joint C,
> $+\rightarrow \sum F_{x}=0 ;$
> $-F_{C A}+707.1 \cos 45^{\circ} N=0 \Rightarrow F_{C A}=500 N(T)$
> $+\uparrow \sum_{y}=0 ;$
> $C_{y}-707.1 \sin 45_{o} N=0 \Rightarrow C_{y}=500 \mathrm{~N}$

For Joint A,

$+\rightarrow \sum F_{x}=0$;
$500 \mathrm{~N}-A_{x}=0 \Rightarrow A_{x}=500 \mathrm{~N}$
$+\uparrow \sum F_{y}=0$;
$500 \mathrm{~N}-A_{y}=0 \Rightarrow A_{y}=500 \mathrm{~N}$

Mr. Diyari Burhan

Trusses

Solution

- FBD of each pin shows the effect of all the connected members and external forces applied to the pin
- FBD of each member shows only the effect of the end pins on the member

Mr. Diyari Burhan

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Trusses
Solution:
Step 1: Find reactions:
$\sum M_{E}=0 \Rightarrow A y * 20-(30 * 15)-(60 * 10)-(30 * 5)=0$
$\boldsymbol{A} \boldsymbol{y}=\mathbf{6 0} \mathbf{k N}$ 介
$\sum M_{A}=0 \Rightarrow(30 * 15)+(60 * 10)+(30 * 5)-20 E y=0$
$\boldsymbol{A} \boldsymbol{y}=\mathbf{6 0} \mathbf{k N}$ §
Check:
$\sum f y=0 \Rightarrow 60+60-30-60-30=0 \quad \therefore O K$

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Final answers are as the following:

Ans. $A B=D E=96.0 \mathrm{kN} C$
$A H=E F=75 \mathrm{kN} T, B C=C D=75 \mathrm{kN} C$
$B H=C G=D F=60 \mathrm{kN} T$
$C H=C F=48.0 \mathrm{kN} C, G H=F G=112.5 \mathrm{kN} T$
Mr. Diyari Burhan

Trusses

Method of Sections

$>$ If the forces in only a few members of a truss are to be determined, the method of sections is generally the most appropriate analysis procedure.
> The method of sections consists of passing an imaginary line through the truss, cutting it into sections.

- Each imaginary section must be in equilibrium if the entire truss is in equilibrium.

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M_{z}=0
$$

Trusses
 Method of Sections

Procedure for analysis - the following is a procedure for analyzing a truss using the method of sections:

1. First, if necessary, determine the support reactions for the entire truss.
2. Next, make a decision on how the truss should be "cut" into sections and draw the corresponding free-body diagrams.
3. Try to apply the three equations of equilibrium such that simultaneous solution is not required.

Moments should be summed about points that lie at the intersection of the lines of action of two unknown forces, so that the remaining force may be determined.

Trusses
 Method of Sections

Imagine cutting a structure into two sections about line 11

Mr. Diyari Burhan

Method of Sections

> Typically the section with the fewest forces or with section with the most convenient geometry is selected.
> In this example the left-hand side.

$>$ Apply the three equations of equilibrium to the section.
> If possible, attempt to develop an equation in just one unknown.
> Look for points where the lines of action of several forces are concurrent.

Mr. Diyari Burhan

Trusses

Method of Sections

$$
\begin{aligned}
& \sum M_{H}=0=F_{B C}(20 \mathrm{ft} .)-30 k(20 \mathrm{ft} .)-50 k(15 \mathrm{ft} .) \quad \mathrm{F}_{\mathrm{BC}}=67.5 \mathrm{k} \\
& \sum M_{C}=0=-F_{H G}(20 \mathrm{ft} .)-30 k(20 \mathrm{ft} .)-50 k(30 \mathrm{ft} .)+40 \mathrm{k}(15 \mathrm{ft} .)
\end{aligned}
$$

Mr. Diyari Burhan

Trusses

Example 5.5

Determine the force in members GE, GC, and $B C$ of the truss. Indicate whether the members are in tension or compression.

Mr. Diyari Burhan

Trusses
 Solution

- Choose section a-a since it cuts through the three members
- Draw FBD of the entire truss

$$
\begin{aligned}
& +\rightarrow \sum F_{x}=0 ; \quad 400 \mathrm{~N}-A_{x}=0 \Rightarrow A_{x}=400 \mathrm{~N} \\
& \sum M_{A}=0 ; \quad-1200 N(8 m)-400 N(3 m)+D_{y}(12 m)=0 \Rightarrow D_{y}=900 \mathrm{~N} \\
& +\uparrow \sum F_{y}=0 ; \quad A_{y}-1200 \mathrm{~N}+900 \mathrm{~N}=0 \Rightarrow A_{y}=300 \mathrm{~N}
\end{aligned}
$$

Mr. Diyari Burhan

Trusses
 Solution

- Draw FBD for the section portion

$\sum M_{G}=0 ; \quad-300 N(4 m)-400 N(3 m)+F_{B C}(3 m)=0 \Rightarrow F_{B C}=800 N(T)$
$\sum M_{C}=0 ; \quad-300 N(8 m)+F_{G E}(3 m)=0 \Rightarrow F_{G E}=800 N(C)$
$+\uparrow \sum F_{y}=0 ; \quad 300 N-\frac{3}{5} F_{G C}=0 \Rightarrow F_{G C}=500 N(T)$

