

CIHAN UNIVERSITY SULAIMANI

Chapter 1: Introduction

Strength of Materials

Prepared by:

Diyari B. Hussein M.Sc. in Structural Engineering Cihan University of Sulaimani - Architectuural Department ©2022-2023

U.S. unit and SI Unit

<u>Unit of length</u>

Column A		Column B		Column C	
U.S. Unit	Abbreviation	SI Unit	Abbreviation	Conversion Factor	
inch	in.	centimeter	cm	2.54	
foot	ft	meter	m	0.305	
mile	mi	kilometer	km	1.61	
miles/hour	mi/h	meters per second	m/s	0.447	
square feet	ft2	square meter	m²	0.0930	
acre	acre	hectare	ha	0.405	
cubic feet	ft)	liter	L	28.3	
gallon (U.S.)	gal (U.S.)	liter	L	3.785	
pound (mass)	lb (mass)	kilogram	kg	0.454	
ton	ton (U.S.)	metric ton	ton (metric)	0.907	

3

	U.S. unit and SI Unit				
<u>Unit of m</u>	ass				
	SI Unit	Abbreviation	Metric Equivalent	English Equivalent	
	metric ton	t	10 ³ kg	1.10 U.S. ton	
	kilogram	kg	10³ g	2.20 lb	
	gram	g	1 g	0.0353 oz	
	milligram	mg	10 ⁻³ g	2.2×10^{-6} lb	
	microgram	μg	10 ⁻⁶ g	2.2×10^{-9} lb	
	nanogram	ng	10 ⁻⁹ g	2.2×10^{-12} lb	

	U.S. unit and SI Unit				
<u>Unit of time</u>					
	Time Unit	Abbreviation			
	hour	h			
	minute	min			
	second	S			
	millisecond	ms			
	microsecond	μs			
	nanosecond	ns			

What is Mechanics of Materials?
Mechanics of Materials answers <u>TWO</u> questions:

Is the material strong enough?
Is the material stiff enough?

Therefore in strength of materials, the principles that govern STRENGTH and RIGIDITY, should be studied.

Types of Supports

<u>Roller supports</u> are free to rotate and translate along the surface upon which the roller rests. The surface can be horizontal, vertical, or sloped at any angle. Roller supports are commonly located at one end of long bridges.

Roller supports

simple supports

Types of Supports

Fixed supports are the most rigid type of support or connection. It constrains the member in all translations and rotations (i.e. it cannot move or rotate in any direction).

Fixed support

Fixed connection

Types of Beams

Depending unknown reactions and equilibrium equations

1- STATICALLY DETERMINATE BEAMS

No. of unknowns = No. of static (Reactions) equilibrium equations

2- STATICALLY <u>INDETERMINATE</u> BEAMS No. of unknowns > No. of eq^m, equations

Equations of Equilibrium for a rigid body

In three dimensions (x-y-z plane)

In two dimensions (x-y plane)

$$\begin{split} \Sigma F_x &= 0\\ \Sigma F_y &= 0\\ \Sigma M_O &= 0 \end{split}$$

In (x-y plane) all the moments are summed about point O and so they will be directed along the z axis.

Solution

25

Example :-

Strength of Materials

