Data Structures (CUE31023)

1. Information on the Programme

1.1. Higher Education Institution

Cihan University Sulaimaniya

1.2. College

Science

1.3. Department

Computer Science

1.4. Field of Study

Data Structures

1.5. Cycle of Study’

1

1.6. Specialization/ Study Programme

Computer Science

1.7. Form of Education Full Time
2. Information on the Discipline
2.1. Discipline Name Data Structures
2.2. Code CUE31023
2.3. Language: English
2.4. (Theory) Lecturer Dr. Asan Baker Kanbar
E-mail: asan.baker@sulicihan.edu.krd
Tel: 07702396919
Webpage, Google Classroom
2.5. Practical/Seminar/ Dr. Asan Baker Kanbar
Laboratory/ Project Lecturer asan.baker@sulicihan.edu.krd
e-mail: 07702396919
Tel:
Webpage, Google Classroom
2.6. 2.7 | 2.8- Assessment Written 2.9. Discipline Content® cD
S|
Year | -2022 .Semester 1 Type exam. Status Mandotary’
of 2023 & MD

mailto:asan.baker@sulicihan.edu.krd
mailto:asan.baker@sulicihan.edu.krd

3. Total estimated time (Teaching Hours per Semester)

College of Science

Department: Computer Science Department

Decipline: Data structures
Stage: 2nd
Total Contact Hours: 52
Total Self Study Hours: 110
Total No. Hours: 162
ECTS: 6.00

Contact Hours

Self Study

No. of Weeks . .
Theoretical |Practical| Lab.

Tutorial

Visit

Quiz

Reading

Assignment

Report

Midterm
Exam.

Final Exam.

1" Week
(Registration)

2™ Week

3" Week

4" Week

5" Week

6" Week

7" Week

10

8" Week

9" Week

10™ Week

11" Week

12" Week

13" Week

10

[N R I S I S I S I I I S O I I N)
(ST T I ST T (T T T T T T T

14" Week

L3, (Y I S I T N NS ST ST S S

20

15" Week |
Final Exam.)

16 Week
Final Exam.)

TOTAL 26 0 26

12

12

10

20

20

4. Prerequisites (if applicable)

4.1 Curriculum-Related
4.2 Skills-Related

5. Conditions (if applicable)

5.1. For the
Theoretical

A

5.2. For the Practical

Microsoft visual C ++ and visual code

Read and comprehend the textbook material.
Attend all the classes and take notes on class discussions.
Actively participate in class discussions and activities.
Submit all the assignments and the project on time.

Pass tests and quizzes.

All students are normally required to attend the Lab; take part in lectures through

applying the exercises on the computer or as quizzes, and to implement projects.

6. Cumulated Specific Competences

Professional Competencies

Transversal competences

Data Structure Knowledge: A deep understanding of various data
structures such as arrays, linked lists, stacks, queues, trees, graphs, and
hash tables. This includes knowledge of their properties, operations,
time and space complexity, and trade-offs.

Algorithmic Problem Solving: The ability to analyze problems and
design efficient algorithms using appropriate data structures. This
involves selecting the most suitable data structure based on problem
requirements and implementing algorithms to manipulate and process
data efficiently.

Implementation Skills: Proficiency in implementing data structures in
programming languages like C++, Java, or Python. This includes
writing code for data structure operations, handling memory
management, and considering error handling and edge cases.

Efficiency and Performance Optimization: The skill to analyze and
optimize the performance of data structures and algorithms. This
involves evaluating time and space complexity, identifying bottlenecks,
and employing optimization techniques to enhance efficiency.

Algorithm Analysis and Complexity: The capability to analyze the time
and space complexity of algorithms and understand their impact on
program performance. This includes knowledge of Big O notation,
worst-case, average-case, and best-case analysis, and the ability to
compare and select appropriate algorithms based on efficiency
requirements.

Problem-Solving: The ability to identify problems, analyze them, and
devise effective solutions using data structures. This includes breaking
down complex problems, applying critical thinking, and considering
different approaches to arrive at optimal solutions.

Analytical Thinking: The skills to examine data structures and
algorithms critically, understands their underlying principles, and
evaluate their strengths and weaknesses. Analytical thinking helps in
optimizing data structures, identifying patterns, and making informed
decisions.

Logical Reasoning: The capacity to think logically and make logical
connections between different elements of data structures. This involves
understanding the flow of data and control within a program and being
able to reason through the steps and outcomes of algorithms.

Attention to Detail: The ability to pay close attention to details when
implementing and working with data structures. This includes ensuring
accuracy, considering edge cases, and being meticulous in code writing,
debugging, and documentation.

Collaboration and Teamwork: The skill to work effectively in a team
environment when designing, implementing, and optimizing data
structures. This involves communicating and collaborating with team
members, sharing ideas, resolving conflicts, and collectively solving
problems.

7. Discipline Objectives (Based on the cumulated specific Competences)

7.1. General Objective After going through this lesson, you would be able to:

Problem-Solving: The ability to identify problems, analyze them, and

7.2. Specific Objectives

devise effective solutions using data structures. This includes breaking
down complex problems, applying critical thinking, and considering
different approaches to arrive at optimal solutions.

e Analytical Thinking: The skill to examine data structures and algorithms
critically, understand their underlying principles, and evaluate their
strengths and weaknesses. Analytical thinking helps in optimizing data
structures, identifying patterns, and making informed decisions.

e Logical Reasoning: The capacity to think logically and make logical
connections between different elements of data structures. This involves
understanding the flow of data and control within a program and being
able to reason through the steps and outcomes of algorithms.

e Attention to Detail: The ability to pay close attention to details when
implementing and working with data structures. This includes ensuring
accuracy, considering edge cases, and being meticulous in code writing,
debugging, and documentation.

e Collaboration and Teamwork: The skill to work effectively in a team
environment when designing, implementing, and optimizing data
structures. This involves communicating and collaborating with team
members, sharing ideas, resolving conflicts, and collectively solving
problems.

[]

Understand the characteristics and properties of common data structures such as
arrays, linked lists, stacks, queues, trees, graphs, and hash tables.

Explain the basic operations and functionalities associated with each data structure,
including insertion, deletion, searching, and traversal.

Analyze the time and space complexity of data structure operations to evaluate their
efficiency and performance.

Select the most appropriate data structure for a given problem based on its
requirements, constraints, and expected operations.

Implement data structures using programming languages like C++, Java, or Python,
including the necessary data manipulation and memory management operations.

Demonstrate proficiency in applying algorithms and data structures to solve real-
world problems, such as searching, sorting, graph traversal, and path finding.

Design and implement advanced data structures like AVL trees, B-trees, or skip
lists to handle more complex scenarios and optimize performance.

Apply data structures in the design and implementation of efficient algorithms for
various computational problems, including sorting, searching, and graph algorithms.

Develop skills in analyzing and comparing different data structures to make
informed decisions about their suitability for specific scenarios.

8. Content

week | 8.1. Theoretical-Number of Hours Teaching methods Observation
1 registration
2 Introduction to Data Structures and Algorithms lecture 1 lecture = 2 hours
e Overview of data structures and their
importance
e Introduction to algorithm analysis
e Basic concepts of C++ programming
3 Arrays and Strings lecture, assignment 1 lecture = 2 hours
e Introduction to arrays and strings in C++
e Array operations and manipulation
e String operations and manipulation
4 Linked Lists lecture, Quiz 1 lecture = 2 hours
e Introduction to linked lists and their types
e Linked list implementation in C++
e Linked list operations and manipulation
5 Stacks and Queues lecture, assignment 1 lecture = 2 hours
e Introduction to stacks and queues
e Stack and queue implementation using
arrays and linked lists
e Stack and queue operations and
applications
6 Recursion 1 lecture = 2 hours
e Understanding recursion and recursive
algorithms .
gor! .) hni Lecture, Quiz
e Recursive programming techniques (reportl)
e Recursive algorithms for problems like
factorial, Fibonacci series, etc.
7 MIDTERM EXAM 1
8 Introduction to sorting algorithms: bubble sort, 1 lecture = 2 hours
insertion sort, selection sort
e Divide and Conquer algorithms: merge Lecture

sort, quicksort
e Analysis of sorting algorithms

9 Trees lecture, Assignment 1 lecture = 2 hours
e Introduction to trees and their properties
e Binary tree implementation in C++
e Tree traversal algorithms: preorder,
inorder, postorder
10 Binary Search Trees Lecture 1 lecture = 2 hours
(Report2)
e Introduction to binary search trees (BST)
e BST operations: insert, delete, search
e Balanced BSTs: AVL trees and Red-Black
trees
11 MIDTERM EXAM 2
12 Introduction to heaps and priority queues lecture, Assignment | 1 lecture =2 hours
e Heap implementation using arrays
e Priority queue implementation using
heaps
13 | Introduction to hashing and hash tables lecture, Quiz 1 lecture = 2 hours
e Hash table implementation using arrays
e Collision resolution techniques: chaining,
open addressing
14 | Graphs lecture 1 lecture = 2 hours

e Introduction to graphs and their
representations

e Graph traversal algorithms: BFS and DFS

e Shortest path algorithms: Dijkstra's
algorithm

week 8.2. Practical Works—Number of Hours Teaching Observation
methods

1 registration

2 Introduction to the C++ programming language 1llecture = 2 hours
Basic C++ syntax and data types Lecture

3 Implementation and manipulation of arrays Lecture 1 lecture = 2 hours
String operations and algorithms in C++ Assignmént

4 Implementation of singly linked lists 1 lecture = 2 hours
Linked list operations and algorithms Lecture, Quiz

5 Implementation of stacks using arrays and linked lists 1 lecture = 2 hours
Implementation of queues using arrays and linked lists Lecture,
Applications of stacks and queues Assignment

6 Understanding recursion and recursive algorithms 1 lecture = 2 hours
Implementing recursive algorithms for common Lecture, Quiz
problems

7 MIDTERM EXAM 1 2 hours

8 Implementation of various sorting algorithms: bubble 1 lecture = 2 hours
sort, insertion sort, selection sort, merge sort,
quicksort Lecture, Quiz
Analysis and comparison of sorting algorithms

9 Implementation of binary trees Lecture 1 lecture = 2 hours
Tree traversal algorithms: preorder, inorder, postorder Assignmént

10 | Implementation of binary search trees (BST) 1 lecture = 2 hours
BST op.eratlons: insert, delete, search Lecture, Quiz
Balancing BSTs: AVL trees or Red-Black trees

11 MIDTERM EXAM 2 2 hours

12 | Implementation of binary search trees (BST) 1 lecture = 2 hours
BST op‘eratlons: insert, delete, search Lecture, Quiz
Balancing BSTs: AVL trees or Red-Black trees

13 | Implementation of hash tables using arrays 1 lecture = 2 hours
CoII|5|orT resolution techniques: chaining, open Lecture
addressing

14 | Implementation of graphs using adjacency matrix and 1 lecture = 2 hours
adjacency list Lecture,
Graph traversal algorithms: BFS and DFS Assignment

- Compulsory Bibliography:

Key references:

e Data structures and algorithm analysis in C++ by Mark Allen wiess
e Data Structure and program design in C++ by Robert L. Kruse

e Data Structure via C++ by Michael Berman

e Data Structures and Algorithms by Catherine Leung ,2017

ional Bibliography:

9. Assessment

Type of Activity 9.1. Assessment 9.2. Assessment 9.3. Percentage of the final Grade
Criteria’ Type
9.4. Theoretical Mid-term (20%) Exam %055
Final —exam (35%)
9.5. Practical/ Mid-term (10%) Exam %25
Seminar/Laboratory Final-Exam (15%)
9.6. Activity during Quizzes (10%) + Exam %20
Semester Assignment (10%)+

Minimum performance Standards:

Theoretical Lecturer

Dr. Asan Baker Kanbar

Practice Lecturer

Dr. Asan Baker Kanbar

Approved by the Curriculum development Committee:

N

Head of the Department | Dr. Asan Baker Kanbar

