
Data Structures (CUE31023)

1. Information on the Programme

Cihan University Sulaimaniya 1.1. Higher Education Institution

Science 1.2. College

Computer Science 1.3. Department

Data Structures 1.4. Field of Study

1 1.5. Cycle of Study
1

Computer Science 1.6. Specialization/ Study Programme

Full Time 1.7. Form of Education

2. Information on the Discipline

Data Structures 2.1. Discipline Name

CUE31023 2.2. Code

English 2.3. Language:

Dr. Asan Baker Kanbar

asan.baker@sulicihan.edu.krd
07702396919

2.4. (Theory) Lecturer

 E-mail:

 Tel:

Webpage, Google Classroom

Dr. Asan Baker Kanbar

asan.baker@sulicihan.edu.krd
07702396919

2.5. Practical/Seminar/

Laboratory/ Project Lecturer

 e-mail:

 Tel:

 Webpage, Google Classroom

CD Content3 2.9. Discipline

Status
Written

exam,

&

CE

2.8. Assessment

Type2

1st

2.7

.Semester

2022-

2023

2.6.

 Year

of

Study
MD

Mandotary4

mailto:asan.baker@sulicihan.edu.krd
mailto:asan.baker@sulicihan.edu.krd

3. Total estimated time (Teaching Hours per Semester)

4. Prerequisites (if applicable)

 4.1 Curriculum-Related

Microsoft visual C ++ and visual code
4.2 Skills-Related

5. Conditions (if applicable)

1. Read and comprehend the textbook material.

2. Attend all the classes and take notes on class discussions.

3. Actively participate in class discussions and activities.

4. Submit all the assignments and the project on time.

5. Pass tests and quizzes.

5.1. For the

Theoretical

All students are normally required to attend the Lab; take part in lectures through

applying the exercises on the computer or as quizzes, and to implement projects.
5.2. For the Practical

6. Cumulated Specific Competences

 Data Structure Knowledge: A deep understanding of various data

structures such as arrays, linked lists, stacks, queues, trees, graphs, and

hash tables. This includes knowledge of their properties, operations,

time and space complexity, and trade-offs.

 Algorithmic Problem Solving: The ability to analyze problems and

design efficient algorithms using appropriate data structures. This

involves selecting the most suitable data structure based on problem

requirements and implementing algorithms to manipulate and process

data efficiently.

 Implementation Skills: Proficiency in implementing data structures in

programming languages like C++, Java, or Python. This includes

writing code for data structure operations, handling memory

management, and considering error handling and edge cases.

 Efficiency and Performance Optimization: The skill to analyze and

optimize the performance of data structures and algorithms. This

involves evaluating time and space complexity, identifying bottlenecks,

and employing optimization techniques to enhance efficiency.

 Algorithm Analysis and Complexity: The capability to analyze the time

and space complexity of algorithms and understand their impact on

program performance. This includes knowledge of Big O notation,

worst-case, average-case, and best-case analysis, and the ability to

compare and select appropriate algorithms based on efficiency

requirements.

Professional Competencies

 Problem-Solving: The ability to identify problems, analyze them, and

devise effective solutions using data structures. This includes breaking

down complex problems, applying critical thinking, and considering

different approaches to arrive at optimal solutions.

 Analytical Thinking: The skills to examine data structures and

algorithms critically, understands their underlying principles, and

evaluate their strengths and weaknesses. Analytical thinking helps in

optimizing data structures, identifying patterns, and making informed

decisions.

 Logical Reasoning: The capacity to think logically and make logical

connections between different elements of data structures. This involves

understanding the flow of data and control within a program and being

able to reason through the steps and outcomes of algorithms.

 Attention to Detail: The ability to pay close attention to details when

implementing and working with data structures. This includes ensuring

accuracy, considering edge cases, and being meticulous in code writing,

debugging, and documentation.

 Collaboration and Teamwork: The skill to work effectively in a team

environment when designing, implementing, and optimizing data

structures. This involves communicating and collaborating with team

members, sharing ideas, resolving conflicts, and collectively solving

problems.



Transversal competences

7. Discipline Objectives (Based on the cumulated specific Competences)

After going through this lesson, you would be able to:

 Problem-Solving: The ability to identify problems, analyze them, and

7.1. General Objective

devise effective solutions using data structures. This includes breaking

down complex problems, applying critical thinking, and considering

different approaches to arrive at optimal solutions.

 Analytical Thinking: The skill to examine data structures and algorithms

critically, understand their underlying principles, and evaluate their

strengths and weaknesses. Analytical thinking helps in optimizing data

structures, identifying patterns, and making informed decisions.

 Logical Reasoning: The capacity to think logically and make logical

connections between different elements of data structures. This involves

understanding the flow of data and control within a program and being

able to reason through the steps and outcomes of algorithms.

 Attention to Detail: The ability to pay close attention to details when

implementing and working with data structures. This includes ensuring

accuracy, considering edge cases, and being meticulous in code writing,

debugging, and documentation.

 Collaboration and Teamwork: The skill to work effectively in a team

environment when designing, implementing, and optimizing data

structures. This involves communicating and collaborating with team

members, sharing ideas, resolving conflicts, and collectively solving

problems.



Understand the characteristics and properties of common data structures such as

arrays, linked lists, stacks, queues, trees, graphs, and hash tables.

Explain the basic operations and functionalities associated with each data structure,

including insertion, deletion, searching, and traversal.

Analyze the time and space complexity of data structure operations to evaluate their

efficiency and performance.

Select the most appropriate data structure for a given problem based on its

requirements, constraints, and expected operations.

Implement data structures using programming languages like C++, Java, or Python,

including the necessary data manipulation and memory management operations.

Demonstrate proficiency in applying algorithms and data structures to solve real-

world problems, such as searching, sorting, graph traversal, and path finding.

Design and implement advanced data structures like AVL trees, B-trees, or skip

lists to handle more complex scenarios and optimize performance.

Apply data structures in the design and implementation of efficient algorithms for

various computational problems, including sorting, searching, and graph algorithms.

Develop skills in analyzing and comparing different data structures to make

informed decisions about their suitability for specific scenarios.

7.2. Specific Objectives

8. Content

Observation Teaching methods 8.1. Theoretical-Number of Hours week

 registration 1

1 lecture = 2 hours lecture Introduction to Data Structures and Algorithms

 Overview of data structures and their

importance

 Introduction to algorithm analysis

 Basic concepts of C++ programming

2

1 lecture = 2 hours lecture, assignment Arrays and Strings

 Introduction to arrays and strings in C++

 Array operations and manipulation

 String operations and manipulation

3

1 lecture = 2 hours lecture, Quiz Linked Lists

 Introduction to linked lists and their types

 Linked list implementation in C++

 Linked list operations and manipulation

4

1 lecture = 2 hours lecture, assignment Stacks and Queues

 Introduction to stacks and queues

 Stack and queue implementation using
arrays and linked lists

 Stack and queue operations and
applications

5

1 lecture = 2 hours

Lecture, Quiz

(report1)

Recursion

 Understanding recursion and recursive
algorithms

 Recursive programming techniques

 Recursive algorithms for problems like
factorial, Fibonacci series, etc.

6

MIDTERM EXAM 1 7

1 lecture = 2 hours

Lecture

Introduction to sorting algorithms: bubble sort,
insertion sort, selection sort

 Divide and Conquer algorithms: merge
sort, quicksort

 Analysis of sorting algorithms

8

1 lecture = 2 hours lecture, Assignment Trees

 Introduction to trees and their properties

 Binary tree implementation in C++

 Tree traversal algorithms: preorder,
inorder, postorder

9

1 lecture = 2 hours Lecture

 (Report2)
Binary Search Trees

 Introduction to binary search trees (BST)

 BST operations: insert, delete, search

 Balanced BSTs: AVL trees and Red-Black
trees

10

 MIDTERM EXAM 2 11

1 lecture = 2 hours lecture, Assignment Introduction to heaps and priority queues

 Heap implementation using arrays

 Priority queue implementation using
heaps

12

1 lecture = 2 hours lecture, Quiz Introduction to hashing and hash tables

 Hash table implementation using arrays

 Collision resolution techniques: chaining,
open addressing

13

1 lecture = 2 hours lecture Graphs

 Introduction to graphs and their
representations

 Graph traversal algorithms: BFS and DFS

 Shortest path algorithms: Dijkstra's
algorithm

14

Observation Teaching

methods

8.2. Practical Works–Number of Hours week

 registration 1

 1lecture = 2 hours

Lecture

Introduction to the C++ programming language
Basic C++ syntax and data types

2

1 lecture = 2 hours
Lecture,

Assignment

Implementation and manipulation of arrays
String operations and algorithms in C++

3

1 lecture = 2 hours

Lecture, Quiz

 Implementation of singly linked lists
Linked list operations and algorithms

4

1 lecture = 2 hours

Lecture,

Assignment

Implementation of stacks using arrays and linked lists
Implementation of queues using arrays and linked lists
Applications of stacks and queues

5

1 lecture = 2 hours

Lecture, Quiz

Understanding recursion and recursive algorithms
Implementing recursive algorithms for common
problems

6

2 hours

MIDTERM EXAM 1 7

1 lecture = 2 hours

Lecture, Quiz

Implementation of various sorting algorithms: bubble
sort, insertion sort, selection sort, merge sort,
quicksort
Analysis and comparison of sorting algorithms

8

1 lecture = 2 hours
Lecture,

Assignment

Implementation of binary trees
Tree traversal algorithms: preorder, inorder, postorder

9

1 lecture = 2 hours

Lecture, Quiz

Implementation of binary search trees (BST)
BST operations: insert, delete, search
Balancing BSTs: AVL trees or Red-Black trees

10

2 hours

MIDTERM EXAM 2 11

1 lecture = 2 hours

Lecture, Quiz

Implementation of binary search trees (BST)
BST operations: insert, delete, search
Balancing BSTs: AVL trees or Red-Black trees

12

1 lecture = 2 hours

Lecture

Implementation of hash tables using arrays
Collision resolution techniques: chaining, open
addressing

13

1 lecture = 2 hours

Lecture,

Assignment

Implementation of graphs using adjacency matrix and
adjacency list
Graph traversal algorithms: BFS and DFS

14

- Compulsory Bibliography:

 Key references:
 Data structures and algorithm analysis in C++ by Mark Allen wiess

 Data Structure and program design in C++ by Robert L. Kruse

 Data Structure via C++ by Michael Berman

 Data Structures and Algorithms by Catherine Leung ,2017

 Optional Bibliography:

9. Assessment

9.3. Percentage of the final Grade 9.2. Assessment

Type

9.1. Assessment

Criteria
2

Type of Activity

%55 Exam Mid-term (20%)

Final –exam (35%)

9.4. Theoretical

%25 Exam Mid-term (10%)

Final-Exam (15%)

9.5. Practical/

Seminar/Laboratory

%20 Exam Quizzes (10%) +

Assignment (10%)+

9.6. Activity during

Semester

Minimum performance Standards:

Dr. Asan Baker Kanbar
Theoretical Lecturer

Dr. Asan Baker Kanbar Practice Lecturer

Approved by the Curriculum development Committee:

 1

 2

 3

Dr. Asan Baker Kanbar Head of the Department

