

Department of Architectural Engineering College of Engineering University of Cihan- Sulaimaniya

Subject: Strength of Materials

Course Book – Year 2

Lecturer's name: Diyari B. Hussein

Academic Year: 2023/2024

Course Book

1. Course name	Strength of Materials
2. Lecturer in	Diyari B. Hussein
charge	
3. Department/	Architecture/Engineering
College	
4. Time (in hours)	Theory: 3
per week	Practical: 0
5. Office hours	Saturday (9:30 AM – 12:30 AM)
6. Course code	ARC2207
7. Teacher's	Earned a bachelor's degree in civil engineering at the
academic profile	University of Sulaimani, Sulaymaneyh/Iraq, and a master's
	degree in structural engineering at Budapest University of
	Technology and Economics, Budapest/Hungary, and
	individual thesis that was 'Comparative analysis of
	strengthening methods for RC monolithic columns'.
8. Keywords	Normal Stress, Shear Stress, Bending Stress, Normal Strain,
	And Torsion

9. Course overview:

This subject is about the performance of deformable solids in various materials under the action of different kinds of loads. Thus the main objective of the course will be to show how to determine the stress, strain, and deflection suffered by bidimensional (and simple tri-dimensional) structural elements when subjected to different loads (e.g. normal, shear, torsion, bending, and combined loads). Once the state of stresses and strains has been established for a particular structure type, the student will be able to evaluate the allowable loads and associated allowable stresses before mechanical failure.

10. Course objective:

Understanding the adequacy of mechanical and structural elements under different loads is essential for the design and safe evaluation of any kind of structure. That is why this course is a major subject in many different engineering careers (Aeronautics, civil engineering, antennas, etc.).

11. Student's obligation

Attendance, and solving homework are essential. Importance should be given to quizzes and students should study daily

12. Forms of teaching Whiteboard and data show

13. Assessment scheme Midterm Examination	30 %
Attendance, Quiz, Homework	10 %
Final theory exam	60 %

14. Student learning outcome:

Understand the fundamental concepts of stress and strain and the relationship between both through the strain-stress equations to solve problems for simple tridimensional elastic solids

Calculate and represent the stress diagrams in bars and simple structures

Solve problems relating to pure and non-uniform bending of beams and other simple structures

Solve problems relating to torsional deformation of bars and other simple tridimensional structures

Understand the concept of buckling and be able to solve the problems related to isolated bars

15. Course Reading List and References:

Key reference: Mechanics of Materials by Hibbeler

16. The Topics:

Lecture No	Торіс
1	Introduction-Concept of Stress: Equilibrium of deformable body
2	Average normal and shear stress, bearing stress, allowable stress, factor of safety, and deformation.
3	Stress and Strain - Axial Loading: Normal and shear strain
4	Stress and Strain - Axial Loading: the tension test, Hooke's law, Poisson's ratio.
5	Torsion: The torsion formula.
6	Torsion: The torsion formula.
7	Pure Bending Shear and moment diagrams
8	The flexure formula
9	Bending of composite beams
10	Shearing Stress in Beams: The shear formula
11	Shear stresses in beams, shear flow in built-up members

12	Combined stresses: moment and axial together	
13	Combined stresses: moment and axial together	
14	Deflection of beams: The elastic curve	
15	Deflection of beams: slope and displacement by integration method	
16	Deflection of beams: slope and displacement by integration method	
Final Examination		

17. Peer review

Main Lecturer in charge Mr. Diyari Burhan Hussein Head of The Department Mrs. Tara Azad Rauof